- Fewell, Z., Davey Smith, G. & Sterne, J. A. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am. J. Epidemiol. 166, 646–655 (2007).
PubMed Google Scholar
- Davey Smith, G. et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 4, e352 (2007).
Google Scholar
- Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).
CAS PubMed Google Scholar
- Fordyce, C. B. et al. Cardiovascular drug development: is it dead or just hibernating? J. Am. Coll. Cardiol. 65, 1567–1582 (2015).
PubMed Google Scholar
- Wang, Q. et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. Int. J. Epidemiol. 45, 1445–1457 (2016).
PubMed PubMed Central Google Scholar
- Corrao, G., Rubbiati, L., Bagnardi, V., Zambon, A. & Poikolainen, K. Alcohol and coronary heart disease: a meta-analysis. Addiction 95, 1505–1523 (2000).
CAS PubMed Google Scholar
- Marmot, M. & Brunner, E. Alcohol and cardiovascular disease: the status of the U shaped curve. BMJ 303, 565–568 (1991).
CAS PubMed PubMed Central Google Scholar
- Kloner, R. A. & Rezkalla, S. H. To drink or not to drink? That is the question. Circulation 116, 1306–1317 (2007).
PubMed Google Scholar
- Mukamal, K. J. & Rimm, E. B. Alcohol's effects on the risk for coronary heart disease. Alcohol Res. Health 25, 255–261 (2001).
CAS PubMed PubMed Central Google Scholar
- Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).
CAS PubMed PubMed Central Google Scholar
- Davey Smith, G. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).
Google Scholar
- Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int. J. Epidemiol. 45, 1600–1616 (2016).
PubMed PubMed Central Google Scholar
- Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet. 16, 327–350 (2015).
CAS PubMed Google Scholar
- Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).
CAS PubMed Google Scholar
- Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).
CAS PubMed Google Scholar
- Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).
CAS PubMed Google Scholar
- Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).
CAS PubMed PubMed Central Google Scholar
- White, J. et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 1, 692–699 (2016).
PubMed PubMed Central Google Scholar
- Cholesterol Treatment Trialists' Collaborators et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).
- Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).
CAS PubMed Google Scholar
- Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).
CAS PubMed Google Scholar
- C Reactive Protein Coronary Heart Disease Genetics Collaboration et al. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).
- Zacho, J. et al. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 359, 1897–1908 (2008).
CAS PubMed Google Scholar
- Holmes, M. V. et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 349, g4164 (2014).
PubMed PubMed Central Google Scholar
- Hagg, S. et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int. J. Epidemiol. 44, 578–586 (2015).
PubMed PubMed Central Google Scholar
- Nordestgaard, B. G. et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 9, e1001212 (2012).
PubMed PubMed Central Google Scholar
- Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317, 626–634 (2017).
PubMed PubMed Central Google Scholar
- Dale, C. et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes and type 2 diabetes: a Mendelian randomization analysis. Circulation http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026560
- Look AHEAD Research Group et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).
- Wurtz, P. et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J. Am. Coll. Cardiol. 67, 1200–1210 (2016).
CAS PubMed PubMed Central Google Scholar
- Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385, 351–361 (2014).
PubMed Google Scholar
- Holmes, M. V. et al. Secretory phospholipase A2-IIA and cardiovascular disease: a Mendelian randomization study. J. Am. Coll. Cardiol. 62, 1966–1976 (2013).
CAS PubMed PubMed Central Google Scholar
- Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 311, 252–262 (2014).
CAS PubMed Google Scholar
- Polfus, L. M., Gibbs, R. A. & Boerwinkle, E. Coronary heart disease and genetic variants with low phospholipase A2 activity. N. Engl. J. Med. 372, 295–296 (2015).
CAS PubMed PubMed Central Google Scholar
- STABILITY Investigators et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).
- Millwood, I. Y. et al. Lipoprotein-associated phospholipase A2 loss-of-function variant and risk of vascular diseases in 90,000 Chinese adults. J. Am. Coll. Cardiol. 67, 230–231 (2016).
PubMed PubMed Central Google Scholar
- Millwood, I. Y. et al. A phenome-wide association study of a lipoprotein-associated phospholipase A2 loss-of-function variant in 90 000 Chinese adults. Int. J. Epidemiol. 45, 1588–1599 (2016).
PubMed PubMed Central Google Scholar
- Talmud, P. J. & Holmes, M. V. Deciphering the causal role of sPLA2s and Lp-PLA2 in coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 35, 2281–2289 (2015).
CAS PubMed Google Scholar
- Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).
CAS PubMed PubMed Central Google Scholar
- Schmidt, A. F. et al. PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 5, 97–105 (2017).
CAS PubMed PubMed Central Google Scholar
- Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).
CAS PubMed Google Scholar
- Lotta, L. A. et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316, 1383–1391 (2016).
CAS PubMed PubMed Central Google Scholar
- Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).
CAS PubMed PubMed Central Google Scholar
- Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).
CAS PubMed Google Scholar
- Wurtz, P. et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36, 648–655 (2013).
CAS PubMed PubMed Central Google Scholar
- Wurtz, P. et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 35, 1749–1756 (2012).
CAS PubMed PubMed Central Google Scholar
- Wurtz, P. et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61, 1372–1380 (2012).
CAS PubMed PubMed Central Google Scholar
- Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).
PubMed PubMed Central Google Scholar
- Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).
PubMed PubMed Central Google Scholar
- Elliott, P. et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA 302, 37–48 (2009).
CAS PubMed PubMed Central Google Scholar
- Evans, D. M. et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet. 9, e1003919 (2013).
PubMed PubMed Central Google Scholar
- Prins, B. P. et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. PLoS Med. 13, e1001976 (2016).
PubMed PubMed Central Google Scholar
- Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
PubMed PubMed Central Google Scholar
- Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
PubMed PubMed Central Google Scholar
- Zanoni, P. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351, 1166–1171 (2016).
CAS PubMed PubMed Central Google Scholar
- Ledford, H. 'Good' cholesterol mutation linked to heart disease. Nature http://www.nature.com/news/good-cholesterol-mutation-linked-to-heart-disease-1.19543?WT.mc_id=FBK_NA_1603_NEWSCHOLESTEROLMUTATION_PORTFOLIO (2016).
- Harb, J. Why having too much 'good' cholesterol can actually be BAD for you. Daily Mail http://www.dailymail.co.uk/health/article-3384473/Why-having-good-cholesterol-actually-BAD-you.html (2016).
- Tall, A. R. An overview of reverse cholesterol transport. Eur. Heart J. 19 (Suppl. A), A31–A35 (1998).
CAS PubMed Google Scholar
- Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).
PubMed PubMed Central Google Scholar
- Zhang, Y. et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115, 2870–2874 (2005).
CAS PubMed PubMed Central Google Scholar
- Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).
CAS PubMed Google Scholar
- Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).
CAS PubMed Google Scholar
- Eli Lilly and Company. Lilly to discontinue development of evacetrapib for high-risk atherosclerotic cardiovascular disease. Lilly https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130 (2015).
- Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).
CAS PubMed PubMed Central Google Scholar
- Anastasius, M. et al. Cholesterol efflux capacity: an introduction for clinicians. Am. Heart J. 180, 54–63 (2016).
CAS PubMed Google Scholar
- Rosenson, R. S. et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 13, 48–60 (2016).
CAS PubMed Google Scholar
- Kingwell, B. A., Chapman, M. J., Kontush, A. & Miller, N. E. HDL-targeted therapies: progress, failures and future. Nat. Rev. Drug Discov. 13, 445–464 (2014).
CAS PubMed Google Scholar
- Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).
CAS PubMed Google Scholar
- Lissilaa, R. et al. Although IL-6 trans-signaling is sufficient to drive local immune responses, classical IL-6 signaling is obligate for the induction of T cell-mediated autoimmunity. J. Immunol. 185, 5512–5521 (2010).
CAS PubMed Google Scholar
- IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).
- Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).
- Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).
CAS PubMed Google Scholar
- Rafiq, S. et al. A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects. Genes Immun. 8, 552–559 (2007).
CAS PubMed PubMed Central Google Scholar
- Mullberg, J. et al. The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J. Immunol. 152, 4958–4968 (1994).
CAS PubMed Google Scholar
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).
CAS PubMed PubMed Central Google Scholar
- Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 37, 2406–2413 (2016).
CAS PubMed Google Scholar
- Richmond, R. C., Hemani, G., Tilling, K., Davey Smith, G. & Relton, C. L. Challenges and novel approaches for investigating molecular mediation. Hum. Mol. Genet. 25, R149–R156 (2016).
CAS PubMed PubMed Central Google Scholar
- Secretan, B. et al. A review of human carcinogens — part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10, 1033–1034 (2009).
PubMed Google Scholar
- Cho, Y. et al. Alcohol intake and cardiovascular risk factors: a Mendelian randomisation study. Sci. Rep. 5, 18422 (2015).
CAS PubMed PubMed Central Google Scholar
- Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K. & Yokoyama, A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 6, e50 (2009).
PubMed Google Scholar
- Peng, G. S. & Yin, S. J. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics 3, 121–127 (2009).
CAS PubMed PubMed Central Google Scholar
- Marmot, M. G. et al. Alcohol and blood pressure: the INTERSALT study. BMJ 308, 1263–1267 (1994).
CAS PubMed PubMed Central Google Scholar
- Chen, L., Davey Smith, G., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).
PubMed PubMed Central Google Scholar
- Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).
PubMed Google Scholar
- Davey Smith, G. Use of genetic markers and gene-diet interactions for interrogating population-level causal influences of diet on health. Genes Nutr. 6, 27–43 (2011).
PubMed Google Scholar
- Tabara, Y. et al. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers. Atherosclerosis 254, 242–248 (2016).
CAS PubMed Google Scholar
- Lewis, S. J. & Davey Smith, G. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol. Biomarkers Prev. 14, 1967–1971 (2005).
CAS PubMed Google Scholar
- Zuccolo, L. & Holmes, M. V. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int. J. Epidemiol. http://dx.doi.org/10.1093/ije/dyw327 (2016).
- Mokry, L. E. et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 12, e1001866 (2015).
PubMed PubMed Central Google Scholar
- Cabre, P. Migration and multiple sclerosis: the French West Indies experience. J. Neurol. Sci. 262, 117–121 (2007).
PubMed Google Scholar
- Dean, G. & Elian, M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 63, 565–568 (1997).
CAS PubMed PubMed Central Google Scholar
- Elian, M., Nightingale, S. & Dean, G. Multiple sclerosis among United Kingdom-born children of immigrants from the Indian subcontinent, Africa and the West Indies. J. Neurol. Neurosurg. Psychiatry 53, 906–911 (1990).
CAS PubMed PubMed Central Google Scholar
- Dean, G. & Kurtzke, J. F. On the risk of multiple sclerosis according to age at immigration to South Africa. Br. Med. J. 3, 725–729 (1971).
CAS PubMed PubMed Central Google Scholar
- Navab, M. et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16, 831–842 (1996).
CAS PubMed Google Scholar
- Myung, S. K. et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346, f10 (2013).
PubMed PubMed Central Google Scholar
- Vivekananthan, D. P., Penn, M. S., Sapp, S. K., Hsu, A. & Topol, E. J. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361, 2017–2023 (2003).
CAS PubMed Google Scholar
- Powers, K. M., Oberley, L. W. & Domann, F. E. in Oxidants in Biology: A Question of Balance (eds Valacchi, G. & Davis, P. A.) 183–201 (Springer, 2008).
Google Scholar
- Jung, O. et al. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ. Res. 93, 622–629 (2003).
CAS PubMed Google Scholar
- Gongora, M. C. et al. Role of extracellular superoxide dismutase in hypertension. Hypertension 48, 473–481 (2006).
CAS PubMed Google Scholar
- Juul, K. et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation 109, 59–65 (2004).
CAS PubMed Google Scholar
- Siedlinski, M., van Diemen, C. C., Postma, D. S., Vonk, J. M. & Boezen, H. M. Superoxide dismutases, lung function and bronchial responsiveness in a general population. Eur. Respir. J. 33, 986–992 (2009).
CAS PubMed Google Scholar
- Young, R. P. et al. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 61, 394–399 (2006).
CAS PubMed PubMed Central Google Scholar
- Juul, K., Tybjaerg-Hansen, A., Marklund, S., Lange, P. & Nordestgaard, B. G. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173, 858–864 (2006).
CAS PubMed Google Scholar
- Kobylecki, C. J., Afzal, S. & Nordestgaard, B. G. Does SOD3 R213G homozygosity influence morbidity, mortality, and lung function in the general population? Antioxid. Redox Signal. 24, 884–891 (2016).
CAS PubMed Google Scholar
- Hartney, J. M. et al. A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution. Circ. Cardiovasc. Genet. 7, 659–666 (2014).
CAS PubMed PubMed Central Google Scholar
- Kobylecki, C. J., Afzal, S., Davey Smith, G. & Nordestgaard, B. G. Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. Am. J. Clin. Nutr. 101, 1135–1143 (2015).
CAS PubMed Google Scholar
- Cook, N. R. et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch. Intern. Med. 167, 1610–1618 (2007).
CAS PubMed PubMed Central Google Scholar
- Cholesterol Treatment Trialists' Collaborators et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).
- Davey Smith, G. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).
Google Scholar
- McGill, H. C. Jr et al. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307S–1315S (2000).
CAS PubMed Google Scholar
- Strong, J. P., Malcom, G. T., Newman, W. P. III & Oalmann, M. C. Early lesions of atherosclerosis in childhood and youth: natural history and risk factors. J. Am. Coll. Nutr. 11 (Suppl.), 51S–54S (1992).
PubMed Google Scholar
- Rosengren, A. et al. Age, clinical presentation, and outcome of acute coronary syndromes in the Euroheart acute coronary syndrome survey. Eur. Heart J. 27, 789–795 (2006).
PubMed Google Scholar
- Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).
PubMed PubMed Central Google Scholar
- Aschard, H., Vilhjalmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).
CAS PubMed PubMed Central Google Scholar
- Richiardi, L., Bellocco, R. & Zugna, D. Mediation analysis in epidemiology: methods, interpretation and bias. Int. J. Epidemiol. 42, 1511–1519 (2013).
PubMed Google Scholar
- Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 48, 634–639 (2016).
CAS PubMed Google Scholar
- Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
CAS PubMed Google Scholar
- Niemi, J. et al. Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs — apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Ann. Med. 41, 451–461 (2009).
CAS PubMed Google Scholar
- Shah, T. et al. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. Circ. Cardiovasc. Genet. 6, 163–170 (2013).
CAS PubMed Google Scholar
- Fall, T. et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 10, e1001474 (2013).
PubMed PubMed Central Google Scholar
- Burgess, S., Dudbridge, F. & Thompson, S. G. Re: “Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects”. Am. J. Epidemiol. 181, 290–291 (2015).
PubMed Google Scholar
- Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in two-sample Mendelian randomisation via the zero modal pleiotropy assumption. Int. J. Epidemiol. (in press).
- Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).
PubMed PubMed Central Google Scholar
- Ala-Korpela, M. & Davey Smith, G. Metabolic profiling-multitude of technologies with great research potential, but (when) will translation emerge? Int. J. Epidemiol. 45, 1311–1318 (2016).
PubMed PubMed Central Google Scholar
- Mundra, P. A., Shaw, J. E. & Meikle, P. J. Lipidomic analyses in epidemiology. Int. J. Epidemiol. 45, 1329–1338 (2016).
PubMed Google Scholar
- Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541 (2016).
CAS PubMed Google Scholar
- Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian randomisation: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 6, 1717–1726 (2016).
Google Scholar
- Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. http://dx.doi.org/10.1038/nrg.2016.160 (2017).
- Hemani, G. et al. MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. Preprint at bioRxiv http://dx.doi.org/10.1101/078972 (2016).
Google Scholar
- Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
CAS PubMed Google Scholar
- Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32, 3207–3209 (2016).
CAS PubMed PubMed Central Google Scholar
- Davey Smith, G., Paternoster, L. & Relton, C. When will Mendelian randomization become relevant for clinical practice and public health? JAMA 317, 589–591 (2017).
PubMed Google Scholar
- Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).
CAS PubMed PubMed Central Google Scholar
- Bush, W. S. & Moore, J. H. Chapter 11: genome-wide association studies. PLoS Comput. Biol. 8, e1002822 (2012).
CAS PubMed PubMed Central Google Scholar
- Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
- Merino, J. et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care 40, 687–693 (2017).
CAS PubMed PubMed Central Google Scholar
- Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
CAS PubMed PubMed Central Google Scholar
- Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).
PubMed PubMed Central Google Scholar
- Wurtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).
PubMed PubMed Central Google Scholar
- Emerging Risk Factors Collaboration et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).
PubMed Central Google Scholar
- Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).
CAS PubMed PubMed Central Google Scholar
- Casas, J. P. et al. PLA2G7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of European Ancestry. Circulation 121, 2284–2293 (2010).
CAS PubMed PubMed Central Google Scholar
- Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).
CAS PubMed Google Scholar
- Myocardial Infarction Genetics Consortium Investigators et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).
- Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).
CAS PubMed Google Scholar
- Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).
CAS PubMed Google Scholar
- Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).
CAS PubMed Google Scholar
- Dewey, F. E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1133 (2016).
CAS PubMed PubMed Central Google Scholar
- Ridker, P. M., Pradhan, A., MacFadyen, J. G., Libby, P. & Glynn, R. J. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet 380, 565–571 (2012).
CAS PubMed PubMed Central Google Scholar
- Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).
CAS PubMed Google Scholar
- Piepoli, M. F. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 37, 2315–2381 (2016).
PubMed PubMed Central Google Scholar
- Yun, K. E. et al. Alcohol and coronary artery calcification: an investigation using alcohol flushing as an instrumental variable. Int. J. Epidemiol. http://dx.doi.org/10.1093/ije/dyw237 (2017).