Genetics of coronary artery disease: discovery, biology and clinical translation (original) (raw)
Ford, E. S. et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med.356, 2388–2398 (2007). ArticleCASPubMed Google Scholar
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet380, 2095–2128 (2012). ArticlePubMed Google Scholar
Mozaffarian, D. et al. Heart disease and stroke statistics — 2016 update: a report from the American Heart Association. Circulation133, e38–e360 (2016). PubMed Google Scholar
Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and risk of coronary disease. N. Engl. J. Med.375, 2349–2358 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gertler, M. M., Garn, S. M. & White, P. D. Young candidates for coronary heart disease. JAMA147, 621–625 (1951). ArticleCAS Google Scholar
Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B. & de Faire, U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med.330, 1041–1046 (1994). The first large-scale prospective study of twins to confirm an increased risk of early-onset CAD among highly related individuals. ArticleCASPubMed Google Scholar
Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J. Intern. Med.252, 247–254 (2002). ArticleCASPubMed Google Scholar
Won, H. H. et al. Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease. PLoS Genet.11, e1005622 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lloyd-Jones, D. M. et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA291, 2204–2211 (2004). ArticleCASPubMed Google Scholar
Murabito, J. M. et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA294, 3117–3123 (2005). ArticleCASPubMed Google Scholar
Watkins, H. & Farrall, M. Genetic susceptibility to coronary artery disease: from promise to progress. Nat. Rev. Genet.7, 163–173 (2006). ArticleCASPubMed Google Scholar
Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. J. Intern. Med.89, 75–84 (1938). Google Scholar
Lehrman, M. A. et al. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science227, 140–146 (1985). The first family-based study to identify a discrete mutation in a single gene predisposing to CAD (familial hypercholesterolaemia). ArticleCASPubMedPubMed Central Google Scholar
Soria, L. F. et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl Acad. Sci. USA86, 587–591 (1989). ArticleCASPubMedPubMed Central Google Scholar
Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet.34, 154–156 (2003). ArticleCASPubMed Google Scholar
Garcia, C. K. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science292, 1394–1398 (2001). ArticleCASPubMed Google Scholar
Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science290, 1771–1775 (2000). ArticleCASPubMed Google Scholar
Wang, L., Fan, C., Topol, S. E., Topol, E. J. & Wang, Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science302, 1578–1581 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lieb, W. et al. Lack of association between the MEF2A gene and myocardial infarction. Circulation117, 185–191 (2008). ArticleCASPubMed Google Scholar
MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature508, 469–476 (2014). Provides a framework for systematically assessing a potentially causal relationship between a given genetic variant and risk of human disease. ArticleCASPubMedPubMed Central Google Scholar
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA111, E455–E464 (2014). ArticleCASPubMedPubMed Central Google Scholar
Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science316, 1491–1493 (2007). ArticleCASPubMed Google Scholar
Ye, S., Willeit, J., Kronenberg, F., Xu, Q. & Kiechl, S. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. J. Am. Coll. Cardiol.52, 378–384 (2008). ArticleCASPubMed Google Scholar
Helgadottir, A. et al. The same sequence variant on9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet.40, 217–224 (2008). ArticleCASPubMed Google Scholar
Smith, J. G. et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ. Cardiovasc. Genet.2, 159–164 (2009). ArticleCASPubMed Google Scholar
Jarinova, O. et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol.29, 1671–1677 (2009). ArticleCASPubMed Google Scholar
Holdt, L. M. et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol.30, 620–627 (2010). ArticleCASPubMed Google Scholar
Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature470, 264–268 (2011). ArticleCASPubMedPubMed Central Google Scholar
Myocardial Infarction Genetics Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet.41, 334–341 (2010).
Coronary Artery Disease Genetics (C4D) Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet.43, 339–344 (2011).
CARDIoGRAMplusC4D Consortium et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet.45, 25–33 (2013).
Nikpay, M. et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet.47, 1121–1130 (2015). ArticleCASPubMedPubMed Central Google Scholar
So, H. C., Gui, A. H., Cherny, S. S. & Sham, P. C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol.35, 310–317 (2011). ArticlePubMed Google Scholar
Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet.17, 535–559 (2016). ArticleCASPubMed Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature.511, 421–427 (2014).
Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N. Engl. J. Med.374, 1134–1144 (2016).
Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet.48, 1171–1184 (2016). ArticleCASPubMedPubMed Central Google Scholar
Erdmann, J. et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature504, 432–436 (2013). ArticleCASPubMed Google Scholar
Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet.95, 5–23 (2014). ArticleCASPubMedPubMed Central Google Scholar
Do, R. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature518, 102–106 (2015). The first large study to use whole-exome sequencing to examine the relationship of rare variants in each gene with CAD. ArticleCASPubMed Google Scholar
Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet.37, 161–165 (2005). ArticleCASPubMed Google Scholar
Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med.354, 1264–1272 (2006). Links inactivating mutations inPCSK9with significantly reduced LDL cholesterol and risk of incident CAD. ArticleCASPubMed Google Scholar
Nioi, P. et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N. Engl. J. Med.374, 2131–2141 (2016). ArticleCASPubMed Google Scholar
Khera, A. V. et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMAhttp://dx.doi.org/10.1001/jama.2017.0972 (2017).
Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of- function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med.371, 32–41 (2014). ArticleCASPubMed Google Scholar
Crosby, J. et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med.371, 22–31 (2014). ArticleCASPubMed Google Scholar
Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet.40, 189–197 (2008). ArticleCASPubMedPubMed Central Google Scholar
Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet.40, 161–169 (2008). ArticleCASPubMedPubMed Central Google Scholar
Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature466, 714–719 (2010). The first paper to characterize the mechanism linking a non-coding variant with changes in gene regulation related to LDL cholesterol metabolism. ArticleCASPubMedPubMed Central Google Scholar
Strong, A. et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J. Clin. Invest.122, 2807–2816 (2012). ArticleCASPubMedPubMed Central Google Scholar
Reilly, M. P. et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet377, 383–392 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pu, X. et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am. J. Hum. Genet.92, 366–374 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bauer, R. C. et al. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation131, 1202–1213 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kessler, T. et al. ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation131, 1191–1201 (2015). ArticleCASPubMed Google Scholar
DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ.47, 20–33 (2016). ArticlePubMed Google Scholar
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov.9, 203–214 (2010). ArticleCASPubMed Google Scholar
Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov.12, 581–594 (2013). This Review article describes the potential utility of human genetics to expedite drug development. ArticleCASPubMed Google Scholar
Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet.45, 1274–1283 (2013).
Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med.361, 2518–2528 (2009). ArticleCASPubMed Google Scholar
Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet.45, 1345–1352 (2013). ArticleCASPubMedPubMed Central Google Scholar
Myocardial Infarction Genetics Consortium Investigators. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med.371, 2072–2082 (2014).
Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med.372, 2387–2397 (2015). ArticleCASPubMed Google Scholar
Lp-PLA(2) Studies Collaboration et al. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet375, 1536–1544 (2010).
Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med.14, 1059–1066 (2008). ArticleCASPubMedPubMed Central Google Scholar
The STABILITY Investigators. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med.370, 1702–1711 (2014).
O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA312, 1006–1015 (2014). ArticleCASPubMed Google Scholar
Polfus, L. M. et al. Coronary heart disease and genetic variants with low phospholipase A2 activity. N. Engl. J. Med.372, 295–296 (2015). ArticleCASPubMedPubMed Central Google Scholar
Casas, J. P. et al. PLA2G7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of European Ancestry. Circulation121, 2284–2293 (2010). ArticleCASPubMedPubMed Central Google Scholar
Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med.372, 1489–1499 (2015). ArticleCASPubMed Google Scholar
Sabatine, M. S. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med.372, 1500–1509 (2015). ArticleCASPubMed Google Scholar
Gaudet, D. et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N. Engl. J. Med.373, 438–447 (2015). ArticleCASPubMed Google Scholar
Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet386, 1472–1483 (2015). ArticleCASPubMed Google Scholar
Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet385, 351–361 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet375, 735–742 (2010). ArticleCASPubMed Google Scholar
Neale, B. M. et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl Acad. Sci. USA107, 7395–7400 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl Acad. Sci. USA107, 7401–7406 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cheng, C. Y. et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat. Commun.6, 6063 (2015). ArticleCASPubMed Google Scholar
Bush, W. S., Oetjens, M. T. & Crawford, D. C. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet.17, 129–145 (2016). ArticleCASPubMed Google Scholar
Emdin, C. A. et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J. Am. Coll. Cardiol.68, 2761–2772 (2016). ArticleCASPubMedPubMed Central Google Scholar
Sawabe, M. et al. Low lipoprotein(a) concentration is associated with cancer and all-cause deaths: a population-based cohort study (the JMS cohort study). PLoS ONE.7, e31954 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lichtenstein, L. et al. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab.12, 580–592 (2010). ArticleCASPubMedPubMed Central Google Scholar
Desai, U. et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc. Natl Acad. Sci. USA104, 11766–11771 (2007). ArticleCASPubMedPubMed Central Google Scholar
McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell141, 210–217 (2010). ArticleCASPubMed Google Scholar
Nelson, M. R. et al. The genetics of drug efficacy: opportunities and challenges. Nat. Rev. Genet.17, 197–206 (2016). ArticleCASPubMed Google Scholar
Paynter, N. P., Ridker, P. M. & Chasman, D. I. Are genetic tests for atherosclerosis ready for routine clinical use? Circ. Res.118, 607–619 (2016). ArticleCASPubMed Google Scholar
Umans-Eckenhausen, M. A., Defesche, J. C., Sijbrands, E. J., Scheerder, R. L. & Kastelein, J. J. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet357, 165–168 (2001). ArticleCASPubMed Google Scholar
Nordestgaard, B. G. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J.34, 3478–3490 (2013). ArticleCASPubMedPubMed Central Google Scholar
Khera, A. V. et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J. Am. Coll. Cardiol.67, 2578–2589 (2016). ArticleCASPubMedPubMed Central Google Scholar
Talmud, P. J. et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case–control study. Lancet381, 1293–1301 (2013). ArticleCASPubMed Google Scholar
Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet344, 1383–1138 (1994).
Cholesterol Treatment Trialists' (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet380, 581–590 (2012).
Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet.17, 392–406 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med.358, 1240–1249 (2008). ArticleCASPubMed Google Scholar
Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet376, 1393–1400 (2010). ArticlePubMedPubMed Central Google Scholar
Tada, H. et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur. Heart J.37, 561–567 (2016). ArticleCASPubMed Google Scholar
Mega, J. L. et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet385, 2264–2271 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES clinical trial). Circulation133, 1181–1188 (2016). ArticlePubMedPubMed Central Google Scholar
Wellcome Trust Case Control Consortium et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet.44, 1294–1301 (2012).
ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science306, 636–640 (2004).
Stylianou, I. M., Bauer, R. C., Reilly, M. P. & Rader, D. J. Genetic basis of atherosclerosis: insights from mice and humans. Circ. Res.110, 337–355 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nurnberg, S. T. et al. From loci to biology: functional genomics of genome-wide association for coronary disease. Circ. Res.118, 586–606 (2016). ArticleCASPubMedPubMed Central Google Scholar
Narasimhan, V. M. et al. Health and population effects of rare gene knockouts in adult humans with related parents. Science352, 474–477 (2016). ArticleCASPubMedPubMed Central Google Scholar
Saleheen, D. et al. Human knockouts in a cohort with a high rate of consanguinity. Preprint at bioRxivhttp://dx.doi.org/10.1101/031518 (2015). Identifies humans with inactivating mutations ('knockouts') in ∼1,000 genes and genotype-based call back to understand relevant physiology. Google Scholar
Choudhry, N. K. et al. Full coverage for preventive medications after myocardial infarction. N. Engl. J. Med.365, 2088–2097 (2011). ArticleCASPubMed Google Scholar
Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res.115, 488–492 (2014). Proof-of-concept study in a mouse model that permanent disruption ofPCSK9using gene editing can decrease LDL cholesterol and atherosclerosis. ArticleCASPubMedPubMed Central Google Scholar
Blendon, R. J., Gorski, M. T. & Benson, J. M. The public and the gene-editing revolution. N. Engl. J. Med.374, 1406–1411 (2016). ArticlePubMed Google Scholar
Libby, P. in Braunwald's Heart Disease: a Textbook of Cardiovascular Medicine 10th edn (eds Bonow, R. O., Mann, D. L., Zipes, D. P. & Libby, P.) 873–890 (Saunders, 2014). Google Scholar
Ridker, P. M., Libby, P. & Buring, J. E. in Braunwald's Heart Disease: a Textbook of Cardiovascular Medicine 10th edn (eds Bonow, R. O., Mann, D. L., Zipes, D. P. & Libby, P.) 891–933 (Saunders, 2014). Google Scholar
Kessler, T., Vilne, B. & Schunkert, H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol. Med.8, 688–701 (2016). ArticleCASPubMedPubMed Central Google Scholar