Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23 (original) (raw)
Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov.8, 235–253 (2008). Google Scholar
Itoh, N. & Ornitz, D. M. Evolution of the Fgf and Fgfr gene families. Trends Genet.20, 563–569 (2004). CASPubMed Google Scholar
Itoh, N. & Ornitz, D. M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn.237, 18–27 (2008). CASPubMed Google Scholar
Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem.271, 15292–15297 (1996). CASPubMed Google Scholar
Ornitz, D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays22, 108–112 (2000). CASPubMed Google Scholar
Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev.16, 107–137 (2005). CASPubMed Google Scholar
Itoh, N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res.342, 1–11 (2010). CASPubMedPubMed Central Google Scholar
Goetz, R. et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol.27, 3417–3428 (2007). CASPubMedPubMed Central Google Scholar
Zhang, X. et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem.281, 15694–15700 (2006). CASPubMed Google Scholar
Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem.281, 6120–6123 (2006). This paper provides the first evidence that FGF23 requires α-klotho to activate FGFR. CASPubMed Google Scholar
Ogawa, Y. et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA104, 7432–7437 (2007). CASPubMedPubMed Central Google Scholar
Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature444, 770–774 (2006). This work identifies the requirement for klotho to convert canonical FGF into endocrine FGFs. CASPubMed Google Scholar
Wu, X. et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J. Biol. Chem.282, 29069–29072 (2007). CASPubMed Google Scholar
Ding, X. et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell. Metab.16, 387–393 (2012). CASPubMedPubMed Central Google Scholar
Kharitonenkov, A. et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol.215, 1–7 (2008). CASPubMed Google Scholar
Lin, B. C., Wang, M., Blackmore, C. & Desnoyers, L. R. Liver-specific activities of FGF19 require Klotho beta. J. Biol. Chem.282, 27277–27284 (2007). CASPubMed Google Scholar
Kurosu, H. et al. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem.282, 26687–26695 (2007). This work establishes β-klotho tissue-specific expression as a major determinant of FGF19 and FGF21 metabolic activity. CASPubMed Google Scholar
Adams, A. C., Cheng, C. C., Coskun, T. & Kharitonenkov, A. FGF21 requires βklotho to act in vivo. PLoS ONE7, e49977 (2012). CASPubMedPubMed Central Google Scholar
Yang, C. et al. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS ONE7, e33870 (2012). CASPubMedPubMed Central Google Scholar
Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell. Metab.2, 217–225 (2005). This is the first elucidation of FGF15/19 in bile acid metabolism. CASPubMed Google Scholar
Choi, M. et al. Identification of a hormonal basis for gallbladder filling. Nat. Med.12, 1253–1255 (2006). CASPubMed Google Scholar
Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev.17, 1581–1591 (2003). CASPubMedPubMed Central Google Scholar
Song, K. H., Li, T., Owsley, E., Strom, S. & Chiang, J. Y. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology49, 297–305 (2009). CASPubMed Google Scholar
Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell. Metab.13, 729–738 (2011). CASPubMedPubMed Central Google Scholar
Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science331, 1621–1624 (2011). CASPubMedPubMed Central Google Scholar
Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models — association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab.297, E1105–E1114 (2009). CASPubMed Google Scholar
Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology149, 6018–6027 (2008). CASPubMed Google Scholar
Bhatnagar, S., Damron, H. A. & Hillgartner, F. B. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J. Biol. Chem.284, 10023–10033 (2009). CASPubMedPubMed Central Google Scholar
Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes58, 250–259 (2009). CASPubMedPubMed Central Google Scholar
Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest.113, 561–568 (2004). CASPubMedPubMed Central Google Scholar
Potthoff, M. J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA106, 10853–10858 (2009). This work elucidates the role of FGF21 in the regulation of carbohydrate and fatty acid metabolism. CASPubMedPubMed Central Google Scholar
Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell. Metab.5, 415–425 (2007). CASPubMed Google Scholar
Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell. Metab.5, 426–437 (2007). This work establishes FGF21 as a crucial hormone in the body's adaptation to fasting. CASPubMed Google Scholar
White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int.60, 2079–2086 (2001). CASPubMed Google Scholar
Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA98, 6500–6505 (2001). CASPubMedPubMed Central Google Scholar
Benet- Pagès, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet.14, 385–390 (2005). Google Scholar
Modica, S. et al. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology142, 355–365 (2012). This study provides the first evidence that FGF19 administration protects mice from cholestasis. CASPubMed Google Scholar
Luo, J. et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci. Transl. Med.6, 247ra100 (2014). This is the first evidence that an FGF19 analogue lowers bile acid synthesis in humans. PubMed Google Scholar
Degirolamo, C. et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology61, 161–170 (2015). CASPubMed Google Scholar
Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell. Metab.18, 333–340 (2013). This is the first study reporting the effects of an FGF21 analogue in humans. CASPubMed Google Scholar
McWhirter, J. R., Goulding, M., Weiner, J. A., Chun, J. & Murre, C. A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A–Pbx1. Development124, 3221–3232 (1997). CASPubMed Google Scholar
Nishimura, T., Utsunomiya, Y., Hoshikawa, M., Ohuchi, H. & Itoh, N. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim. Biophys. Acta1444, 148–151 (1999). CASPubMed Google Scholar
Katoh, M. & Katoh, M. Evolutionary conservation of CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human. Int. J. Mol. Med.12, 45–50 (2003). CASPubMed Google Scholar
Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun.277, 494–498 (2000). CASPubMed Google Scholar
Nishimura, T., Nakatake, Y., Konishi, M. & Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta1492, 203–206 (2000). CASPubMed Google Scholar
Tacer, K. F. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol.24, 2050–2064 (2010). CAS Google Scholar
Wright, T. J. et al. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev. Biol.269, 264–275 (2004). CASPubMed Google Scholar
Xie, M. H. et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine11, 729–735 (1999). CASPubMed Google Scholar
Wente, W. et al. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes55, 2470–2478 (2006). CASPubMed Google Scholar
Zhang, X. et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes57, 1246–1253 (2008). CASPubMed Google Scholar
Muise, E. S. et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol. Pharmacol.74, 403–412 (2008). CASPubMed Google Scholar
Kharitonenkov, A. & Shanafelt, A. B. FGF21: a novel prospect for the treatment of metabolic diseases. Curr. Opin. Investig. Drugs10, 359–364 (2009). CASPubMed Google Scholar
Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest.112, 683–692 (2003). CASPubMedPubMed Central Google Scholar
Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem.278, 37419–37426 (2003). CASPubMed Google Scholar
Nagano, M. et al. Regulation of bile acid synthesis under reconstructed enterohepatic circulation in rats. Steroids69, 701–709 (2004). CASPubMed Google Scholar
Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res.48, 2664–2672 (2007). CASPubMed Google Scholar
Miyata, M. et al. Involvement of multiple elements in FXR-mediated transcriptional activation of FGF19. J. Steroid Biochem. Mol. Biol.132, 41–47 (2012). CASPubMed Google Scholar
Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem.285, 14486–14494 (2010). CASPubMedPubMed Central Google Scholar
Henkel, A. S., Anderson, K. A., Dewey, A. M., Kavesh, M. H. & Green, R. M. A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice. J. Lipid Res.52, 289–298 (2011). CASPubMedPubMed Central Google Scholar
Miyata, M., Hata, T., Yamazoe, Y. & Yoshinari, K. SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells. Biochem. Biophys. Res. Commun.443, 477–482 (2014). CASPubMed Google Scholar
Wistuba, W., Gnewuch, C., Liebisch, G., Schmitz, G. & Langmann, T. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J. Gastroenterol.13, 4230–4235 (2007). CASPubMedPubMed Central Google Scholar
Shimizu, M., Li, J., Maruyama, R., Inoue, J. & Sato, R. FGF19 (fibroblast growth factor 19) as a novel target gene for activating transcription factor 4 in response to endoplasmic reticulum stress. Biochem. J.450, 221–229 (2013). CASPubMed Google Scholar
Vergnes, L., Lee, J. M., Chin, R. G., Auwerx, J. & Reue, K. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell. Metab.17, 916–928 (2013). CASPubMedPubMed Central Google Scholar
Wu, X. et al. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc. Natl Acad. Sci. USA106, 14379–14384 (2009). CASPubMedPubMed Central Google Scholar
Fu, L. et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology145, 2594–2603 (2004). CASPubMed Google Scholar
Kong, B. et al. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology56, 1034–1043 (2012). CASPubMed Google Scholar
Li, S. et al. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell. Metab.20, 320–332 (2014). CASPubMedPubMed Central Google Scholar
Wang, C. et al. Hepatocyte FRS2α is essential for the endocrine fibroblast growth factor to limit the amplitude of bile acid production induced by prandial activity. Curr. Mol. Med.14, 703–711 (2014). CASPubMedPubMed Central Google Scholar
Yu, C. et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem.275, 15482–15489 (2000). CASPubMed Google Scholar
Ito, S. et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J. Clin. Invest.115, 2202–2208 (2005). CASPubMedPubMed Central Google Scholar
Tomiyama, K. et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl Acad. Sci. USA107, 1666–1671 (2010). CASPubMedPubMed Central Google Scholar
Yu, C., Wang, F., Jin, C., Huang, X. & McKeehan, W. L. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem.280, 17707–17714 (2005). CASPubMed Google Scholar
Kir, S., Zhang, Y., Gerard, R. D., Kliewer, S. A. & Mangelsdorf, D. J. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J. Biol. Chem.287, 41334–41341 (2012). CASPubMedPubMed Central Google Scholar
Nitta, M., Ku, S., Brown, C., Okamoto, A. Y. & Shan, B. CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7α-hydroxylase gene. Proc. Natl Acad. Sci. USA96, 6660–6665 (1999). CASPubMedPubMed Central Google Scholar
Stroup, D. & Chiang, J. Y. HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7α-hydroxylase gene (CYP7A1). J. Lipid Res.41, 1–11 (2000). CASPubMed Google Scholar
Miao, J. et al. Bile acid signaling pathways increase stability of small heterodimer partner (SHP) by inhibiting ubiquitin-proteasomal degradation. Genes Dev.23, 986–996 (2009). CASPubMedPubMed Central Google Scholar
Lee, Y. K. et al. Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol. Endocrinol.22, 1345–1356 (2008). CASPubMedPubMed Central Google Scholar
Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev.26, 312–324 (2012). CASPubMedPubMed Central Google Scholar
Tomlinson, E. et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology143, 1741–1747 (2002). CASPubMed Google Scholar
Wu, A. L. et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE6, e17868 (2011). CASPubMedPubMed Central Google Scholar
Yu, X. X. et al. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice. PLoS ONE8, e66923 (2013). PubMedPubMed Central Google Scholar
Ge, H. et al. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions. J. Biol. Chem.289, 30470–30480 (2014). CASPubMedPubMed Central Google Scholar
Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab.3, 19–28 (2014). CASPubMed Google Scholar
Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology154, 9–15 (2013). CASPubMed Google Scholar
Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest.123, 4799–4808 (2013). CASPubMedPubMed Central Google Scholar
Katafuchi, T. et al. Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. Cell. Metab.21, 898–904 (2015). CASPubMedPubMed Central Google Scholar
Lundasen, T., Galman, C., Angelin, B. & Rudling, M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med.260, 530–536 (2006). CASPubMed Google Scholar
Schaap, F. G., van der Gaag, N. A., Gouma, D. J. & Jansen, P. L. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology49, 1228–1235 (2009). CASPubMed Google Scholar
Reiche, M. et al. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm. Metab. Res.42, 178–181 (2010). CASPubMed Google Scholar
Lenicek, M. et al. Bile acid malabsorption in inflammatory bowel disease: assessment by serum markers. Inflamm. Bowel Dis.17, 1322–1327 (2011). PubMed Google Scholar
Walters, J. R. et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin. Gastroenterol. Hepatol7, 1189–1194 (2009). CASPubMed Google Scholar
Schreuder, T. C. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol.298, G440–G445 (2010). CASPubMed Google Scholar
Mráz, M. et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment. Physiol. Res.60, 627–636 (2011). PubMed Google Scholar
Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol.160, 2295–2307 (2002). CASPubMedPubMed Central Google Scholar
Miura, S. et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer12, 56 (2012). CASPubMedPubMed Central Google Scholar
Wu, X. et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl Acad. Sci. USA107, 14158–14163 (2010). CASPubMedPubMed Central Google Scholar
Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell19, 347–358 (2011). CASPubMedPubMed Central Google Scholar
Hyeon, J., Ahn, S., Lee, J. J., Song, D. H. & Park, C. K. Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig. Dis. Sci.58, 1916–1922 (2013). CASPubMed Google Scholar
Latasa, M. U. et al. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS ONE7, e52711 (2012). CASPubMedPubMed Central Google Scholar
Uriarte, I. et al. Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development. Int. J. Cancer136, 2469–2475 (2015). CASPubMed Google Scholar
Pai, R. et al. Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating β-catenin signaling. Cancer Res.68, 5086–5095 (2008). CASPubMed Google Scholar
French, D. M. et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE7, e36713 (2012). CASPubMedPubMed Central Google Scholar
Desnoyers, L. R. et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene27, 85–97 (2008). CASPubMed Google Scholar
Pai, R. et al. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol. Sci.126, 446–456 (2012). CASPubMed Google Scholar
Hagel, M. et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov.5, 424–437 (2015). CASPubMed Google Scholar
Wu, X. et al. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J. Biol. Chem.283, 33304–33309 (2008). CASPubMedPubMed Central Google Scholar
Zhou, M. et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res.74, 3306–3316 (2014). CASPubMed Google Scholar
Lundasen, T. et al. PPARα is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun.360, 437–440 (2007). CASPubMed Google Scholar
Patel, R. et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol. Endocrinol.29, 213–223 (2015). PubMed Google Scholar
Cyphert, H. A. et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J. Biol. Chem.287, 25123–25138 (2012). CASPubMedPubMed Central Google Scholar
Li, Y., Wong, K., Walsh, K., Gao, B. & Zang, M. Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J. Biol. Chem.288, 10490–10504 (2013). CASPubMedPubMed Central Google Scholar
Adams, A. C. et al. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a _PPAR_α-dependent manner. J. Biol. Chem.285, 14078–14082 (2010). CASPubMedPubMed Central Google Scholar
Oishi, K. & Tomita, T. Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver. Biol. Pharm. Bull.34, 1120–1121 (2011). CASPubMed Google Scholar
Li, H. et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes61, 797–806 (2012). CASPubMedPubMed Central Google Scholar
Nygaard, E. B., Vienberg, S. G., Orskov, C., Hansen, H. S. & Andersen, B. Metformin stimulates FGF21 expression in primary hepatocytes. Exp. Diabetes Res.2012, 465282 (2012). PubMedPubMed Central Google Scholar
Oishi, K., Konishi, M., Murata, Y. & Itoh, N. Time-imposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice. Biochem. Biophys. Res. Commun.412, 396–400 (2011). CASPubMed Google Scholar
Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell148, 556–567 (2012). CASPubMedPubMed Central Google Scholar
Wang, H., Qiang, L. & Farmer, S. R. Identification of a domain within peroxisome proliferator-activated receptor γ regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol.28, 188–200 (2008). PubMed Google Scholar
Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem.286, 12983–12990 (2011). CASPubMedPubMed Central Google Scholar
Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev.26, 271–281 (2012). CASPubMedPubMed Central Google Scholar
Luo, Y. & McKeehan, W. L. Stressed liver and muscle call on adipocytes with FGF21. Front. Endocrinol.4, 194 (2013). Google Scholar
Keipert, S. et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab.306, E469–E482 (2014). CASPubMed Google Scholar
Adams, A. C. et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab.2, 31–37 (2012). CASPubMedPubMed Central Google Scholar
Foltz, I. N. et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci Transl Med.4, 162ra153 (2012). PubMed Google Scholar
Holland, W. L. et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell. Metab.17, 790–797 (2013). CASPubMedPubMed Central Google Scholar
Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell. Metab.17, 779–789 (2013). CASPubMed Google Scholar
Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest.103, 1489–1498 (1999). CASPubMedPubMed Central Google Scholar
Leone, T. C., Weinheimer, C. J. & Kelly, D. P. A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA96, 7473–7478 (1999). CASPubMedPubMed Central Google Scholar
Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes63, 4057–4063 (2014). CASPubMedPubMed Central Google Scholar
Berglund, E. D. et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology150, 4084–4093 (2009). CASPubMedPubMed Central Google Scholar
Emanuelli, B. et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J. Clin. Invest.124, 515–527 (2014). CASPubMedPubMed Central Google Scholar
Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med.19, 1147–1152 (2013). CASPubMedPubMed Central Google Scholar
Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes63, 4064–4075 (2014). This is the first evidence that glucose homeostasis is maintained by fine tuning the inter-organ crosstalk between the liver and brain, and that FGF21 has a role in this setting. CASPubMed Google Scholar
Bell, G. I. and Polonsky, K. S. Diabetes mellitus and genetically programmed defects in β-cell function. Nature414, 788–791 (2001). CASPubMed Google Scholar
So, W. Y. et al. High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes62, 3751–3759 (2013). CASPubMedPubMed Central Google Scholar
Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology148, 774–781 (2007). CASPubMed Google Scholar
So, W. Y., Cheng, G., Xu, A., Lam, K. S. L. & Leung, P. S. Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis.6, e1707 (2015). CASPubMedPubMed Central Google Scholar
Johnson, C. L. et al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology137, 1795–1804 (2009). CASPubMed Google Scholar
Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell. Metab.8, 77–83 (2008). CASPubMedPubMed Central Google Scholar
Zhang, J. & Li, Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov. Today19, 579–589 (2014). CASPubMed Google Scholar
Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife1, e00065 (2012). PubMedPubMed Central Google Scholar
De Sousa-Coelho, A. L. et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J. Lipid Res.54, 1786–1797 (2013). CASPubMedPubMed Central Google Scholar
Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med.19, 557–566 (2013). CASPubMed Google Scholar
Adams, A. C. et al. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol. Metab.2, 205–214 (2013). CASPubMedPubMed Central Google Scholar
Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA109, 3143–3148 (2012). CASPubMedPubMed Central Google Scholar
Veniant, M. M. et al. Pharmacological effects of FGF21 are independent of the 'browning' of white adipose tissue. Cell. Metab.21, 731–738 (2015). CASPubMed Google Scholar
Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell. Reports11, 991–999 (2015). CASPubMed Google Scholar
Lee, P., Swarbrick, M. M. & Greenfield, J. R. The sum of all browning in FGF21 therapeutics. Cell. Metab.21, 795–796 (2015). CASPubMed Google Scholar
Owen, B. M., Mangelsdorf, D. J. & Kliewer, S. A. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab.26, 22–29 (2015). CASPubMed Google Scholar
Sarruf, D. A. et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes59, 1817–1824 (2010). CASPubMedPubMed Central Google Scholar
Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med.19, 1153–1156 (2013). CASPubMedPubMed Central Google Scholar
Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell. Metab.20, 670–677 (2014). CASPubMedPubMed Central Google Scholar
Yan, X. et al. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J. Cell. Mol. Med.19, 1557–1568 (2015). CASPubMedPubMed Central Google Scholar
Planavila, A. et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun.4, 2019 (2013). CASPubMed Google Scholar
Planavila, A. et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res.106, 19–31 (2015). CASPubMed Google Scholar
Liu, S. Q. et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci. Rep.3, 2767 (2013). PubMedPubMed Central Google Scholar
Galman, C. et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell. Metab.8, 169–174 (2008). PubMed Google Scholar
Oishi, K., Uchida, D. & Ishida, N. Circadian expression of FGF21 is induced by PPARα activation in the mouse liver. FEBS Lett.582, 3639–3642 (2008). CASPubMed Google Scholar
Andersen, B., Beck-Nielsen, H. & Hojlund, K. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers. Clin. Endocrinol.75, 514–519 (2011). CAS Google Scholar
Yu, H. et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem.57, 691–700 (2011). CASPubMed Google Scholar
Lee, S. A. et al. Various oscillation patterns of serum fibroblast growth factor 21 concentrations in healthy volunteers. Diabetes Metab. J.36, 29–36 (2012). PubMedPubMed Central Google Scholar
Christodoulides, C., Dyson, P., Sprecher, D., Tsintzas, K. & Karpe, F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J. Clin. Endocrinol. Metab.94, 3594–3601 (2009). CASPubMed Google Scholar
Dushay, J. et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology139, 456–463 (2010). CASPubMed Google Scholar
Mraz, M. et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol.71, 369–375 (2009). CAS Google Scholar
Hondares, E. et al. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism63, 312–317 (2014). CASPubMed Google Scholar
Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell. Metab.19, 302–309 (2014). CASPubMedPubMed Central Google Scholar
Lin, Z. et al. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS ONE5, e15534 (2010). CASPubMedPubMed Central Google Scholar
Dostalova, I. et al. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J. Clin. Endocrinol. Metab.93, 3627–3632 (2008). CASPubMed Google Scholar
Kharitonenkov, A. & Adams, A. C. Inventing new medicines: the FGF21 story. Mol. Metab.3, 221–229 (2014). CASPubMed Google Scholar
Woo, Y. C., Xu, A., Wang, Y. & Lam, K. S. Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin. Endocrinol.78, 489–496 (2013). CAS Google Scholar
Adams, A. C. et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE8, e65763 (2013). CASPubMedPubMed Central Google Scholar
Veniant, M. M. et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology153, 4192–4203 (2012). CASPubMed Google Scholar
Nygaard, E. B., Moller, C. L., Kievit, P., Grove, K. L. & Andersen, B. Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (Macaca mulatta). Int. J. Obes38, 183–191 (2014). CAS Google Scholar
Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes59, 2781–2789 (2010). CASPubMedPubMed Central Google Scholar
Gimeno, R. E. & Moller, D. E. FGF21-based pharmacotherapy — potential utility for metabolic disorders. Trends Endocrinol. Metab.25, 303–311 (2014). CASPubMed Google Scholar
Hecht, R. et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS ONE7, e49345 (2012). CASPubMedPubMed Central Google Scholar
Kharitonenkov, A. et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS ONE8, e58575 (2013). CASPubMedPubMed Central Google Scholar
Mu, J. et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes61, 505–512 (2012). CASPubMedPubMed Central Google Scholar
Xu, J. et al. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug. Chem.24, 915–925 (2013). CASPubMed Google Scholar
Huang, Z. et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS ONE6, e20669 (2011). CASPubMedPubMed Central Google Scholar
Camacho, R. C., Zafian, P. T., Achanfuo-Yeboah, J., Manibusan, A. & Berger, J. P. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur. J. Pharmacol.715, 41–45 (2013). CASPubMed Google Scholar
Song, L. et al. A solid-phase PEGylation strategy for protein therapeutics using a potent FGF21 analog. Biomaterials35, 5206–5215 (2014). CASPubMed Google Scholar
Huang, J. et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J. Pharmacol. Exp. Ther.346, 270–280 (2013). CASPubMed Google Scholar
Weng, Y. et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS ONE10, e0119104 (2015). PubMedPubMed Central Google Scholar
Giragossian, C. et al. Mechanistic investigation of the pre-clinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21-antibody protein conjugate. Drug Metab. Dispos.43, 803–811 (2015). CASPubMed Google Scholar
Doppalapudi, V. R. et al. Chemical generation of bispecific antibodies. Proc. Natl Acad. Sci. USA107, 22611–22616 (2010). CASPubMedPubMed Central Google Scholar
Wu, A. L. et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl. Med.3, 113ra126 (2011). PubMed Google Scholar
Smith, R. et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-Klotho bispecific protein. PLoS ONE8, e61432 (2013). CASPubMedPubMed Central Google Scholar
Kolek, O. I. et al. 1α,25-dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol.289, G1036–G1042 (2005). CASPubMed Google Scholar
Yu, X., Sabbagh, Y., Davis, S. I., Demay, M. B. & White, K. E. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone36, 971–977 (2005). CASPubMed Google Scholar
Shimada, T. et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Commun.314, 409–414 (2004). CASPubMed Google Scholar
Meir, T. et al. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int.86, 1106–1115 (2014). CASPubMed Google Scholar
Lanske, B. & Razzaque, M. S. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int.86, 1072–1074 (2014). CASPubMedPubMed Central Google Scholar
Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol.299, F882–F889 (2010). CASPubMed Google Scholar
Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest.117, 4003–4008 (2007). CASPubMedPubMed Central Google Scholar
Galitzer, H., Ben-Dov, I., Lavi-Moshayoff, V., Naveh-Many, T. & Silver, J. Fibroblast growth factor 23 acts on the parathyroid to decrease parathyroid hormone secretion. Curr. Opin. Nephrol. Hypertens.17, 363–367 (2008). CASPubMed Google Scholar
Shimada, T. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Renal Physiol.289, F1088–F1095 (2005). CASPubMed Google Scholar
Tsuji, K., Maeda, T., Kawane, T., Matsunuma, A. & Horiuchi, N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α,25-dihydroxyvitamin D3 synthesis in leptin-deficient ob/ob mice. J. Bone Miner. Res.25, 1711–1723 (2010). CASPubMed Google Scholar
Haussler, M. R. et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev. Endocr. Metab. Disord.13, 57–69 (2012). CASPubMedPubMed Central Google Scholar
Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res.19, 429–435 (2004). CASPubMed Google Scholar
Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature390, 45–51 (1997). This is the first paper to describe the discovery of α-klotho. CASPubMed Google Scholar
Drüeke, T. B. & Prié, D. Klotho spins the thread of life — what does klotho do to the receptor of fibroblast growth factor-23 (FGF23)? Nephrol. Dial. Transplant22, 1524–1526 (2007). PubMed Google Scholar
Farrow, E. G. & White, K. E. Recent advances in renal phosphate handling. Nat. Rev. Nephrol.6, 207–217 (2010). PubMedPubMed Central Google Scholar
Hu, M. C. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J.24, 3438–3450 (2010). CASPubMedPubMed Central Google Scholar
Andrukhova, O. et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone51, 621–628 (2012). CASPubMedPubMed Central Google Scholar
Razzaque, M. S. & Lanske, B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol. Med.12, 298–305 (2006). CASPubMed Google Scholar
Hesse, M., Fröhlich, L. F., Zeitz, U., Lanske, B. & Erben, R. G. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol.26, 75–84 (2007). CASPubMed Google Scholar
Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int.75, 1166–1172 (2009). CASPubMedPubMed Central Google Scholar
Barthel, T. K. et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J. Steroid Biochem. Mol. Biol.103, 381–388 (2007). CASPubMed Google Scholar
Bai, X., Miao, D., Li, J., Goltzman, D. & Karaplis, A. C. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology145, 5269–5279 (2004). CASPubMed Google Scholar
Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med.359, 584–592 (2008). PubMedPubMed Central Google Scholar
Galitzer, H., Ben-Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int.77, 211–218 (2010). CASPubMed Google Scholar
Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int.77, 232–238 (2010). CASPubMed Google Scholar
Hofman-Bang, J., Martuseviciene, G., Santini, M. A., Olgaard, K. & Lewin, E. Increased parathyroid expression of klotho in uremic rats. Kidney Int.78, 1119–1127 (2010). CASPubMed Google Scholar
Mirza, M. A. et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol. Dial. Transplant24, 3125–3131 (2009). CASPubMed Google Scholar
Mirza, M. A., Larsson, A., Melhus, H., Lind, L. & Larsson, T. E. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis207, 546–551 (2009). CASPubMed Google Scholar
Gutiérrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation119, 2545–2552 (2009). PubMedPubMed Central Google Scholar
Touchberry, C. D. et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am. J. Physiol. Endocrinol. Metab.304, E863–E873 (2013). CASPubMedPubMed Central Google Scholar
Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med.348, 1656–1663 (2003). CASPubMed Google Scholar
Yamazaki, Y. et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab.87, 4957–4960 (2002). CASPubMed Google Scholar
Imel, E. A., Hui, S. L. & Econs, M. J. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J. Bone Miner. Res.22, 520–526 (2007). CASPubMed Google Scholar
Mirza, M. A. et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol. Dial. Transplant24, 3125–3131 (2009). CASPubMed Google Scholar
Quarles, L. D. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat. Rev. Endocrinol.8, 276–286 (2012). CASPubMedPubMed Central Google Scholar
Olauson, H. et al. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J. Am. Soc. Nephrol.23, 1641–1651 (2012). CASPubMedPubMed Central Google Scholar
Yamazaki, Y. et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J. Bone Miner. Res.23, 1509–1518 (2008). CASPubMed Google Scholar
Aono, Y. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res.24, 1879–1888 (2009). CASPubMed Google Scholar
Carpenter, T. O. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Invest.124, 1587–1597 (2014). CASPubMedPubMed Central Google Scholar
Shalhoub, V. et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest.122, 2543–2553 (2012). CASPubMedPubMed Central Google Scholar
Koizumi, M., Komaba, H., Nakanishi, S., Fujimori, A. & Fukagawa, M. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant27, 784–790 (2012). CASPubMed Google Scholar
Gonzalez-Parra, E. et al. Lanthanum carbonate reduces FGF23 in chronic kidney disease Stage 3 patients. Nephrol. Dial. Transplant26, 2567–2571 (2011). CASPubMed Google Scholar
Di Marco, G. S. et al. Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD. Nephrol. Dial. Transplant29, 2028–2035 (2014). CASPubMedPubMed Central Google Scholar
Wu, A. L. et al. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia. PLoS ONE8, e57322 (2013). CASPubMedPubMed Central Google Scholar
Muller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci.18, 383–393 (2012). PubMed Google Scholar