Targeting JNK for therapeutic benefit: from junk to gold? (original) (raw)
Kyriakis, J. M. & Avruch, J. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J. Biol. Chem.265, 17355–17363 (1990). ArticleCASPubMed Google Scholar
Hibi, M., Lin, A., Smeal, T., Minden, A. & Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev.7, 2135–2148 (1993). ArticleCASPubMed Google Scholar
Adler, V., Polotskaya, A., Wagner, F. & Kraft, A. S. Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem.267, 17001–17005 (1992). ArticleCASPubMed Google Scholar
Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell76, 1025–1037 (1994). ArticleCASPubMed Google Scholar
Kyriakis, J. M. et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature369, 156–160 (1994). ArticleCASPubMed Google Scholar
Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell103, 239–252 (2000). A concise overview of the components of the three mitogen-activated protein kinase signalling pathways and their therapeutic potential. ArticleCASPubMed Google Scholar
Ventura, J. J., Kennedy, N. J., Lamb, J. A., Flavell, R. A. & Davis, R. J. c-Jun NH2-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol. Cell Biol.23, 2871–2882 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science288, 870–874 (2000). ArticleCASPubMed Google Scholar
Lawler, S., Fleming, Y., Goedert, M. & Cohen, P. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr. Biol.8, 1387–1390 (1998). ArticleCASPubMed Google Scholar
Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev.15, 1419–1426 (2001). ArticleCASPubMedPubMed Central Google Scholar
Enslen, H. & Davis, R. J. Regulation of MAP kinases by docking domains. Biol. Cell93, 5–14 (2001). ArticleCASPubMed Google Scholar
Morrison, D. & Davis, R. J. MAP kinase scaffold proteins in mammals. Annu. Rev. Dev. Cell Biol. (in the press).
Harper, S. J. & LoGrasso, P. Inhibitors of the JNK signaling pathway. Drugs of the Future26, 957–973 (2001). An excellent review of progress in the discovery of inhibitors of JNK signalling, including recent patent activity. ArticleCAS Google Scholar
Maroney, A. C. et al. CEP-1347 (KT7515), a synthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem.276, 25302–25308 (2001). A detailed description of an inhibitor of JNK signalling that functions upstream of the JNKs. ArticleCASPubMed Google Scholar
Manning, A. M. & Mercurio, F. Transcription inhibitors in inflammation. Exp. Opin. Invest. Drugs6, 555–567 (1997). ArticleCAS Google Scholar
Swantek, J. L., Cobb, M. H. & Geppert, T. D. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor-α (TNF-α) translation: glucocorticoids inhibit TNF-α translation by blocking JNK/SAPK. Mol. Cell. Biol.17, 6274–6282 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ishizuka, T. et al. Mast cell tumor necrosis factor α production is regulated by MEK kinases. Proc. Natl Acad. Sci. USA94, 6358–6363 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gum, R., Wang, H., Lengyel, E., Juarez, J. & Boyd, D. Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene14, 1481–1493 (1997). ArticleCASPubMed Google Scholar
Han, Z. et al. Jun-N-terminal kinase in rheumatoid arthritis. J. Pharm. Exp. Therap.291, 124–130 (1999). CAS Google Scholar
Han, Z. et al. c-Jun N-terminal kinase is required for metalloproteinase (MMP) expression in synoviocytes and regulates bone destruction in adjuvant arthritis. J. Clin. Invest.108, 73–81 (2001). ArticleCASPubMedPubMed Central Google Scholar
Clancy, R. et al. Activation of stress-activated protein kinase in osteoarthritis cartilage: evidence for nitric oxide dependence. Osteoarthritis Cartilage9, 294–299 (2002). Article Google Scholar
Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA98, 13681–13686 (2001). The first detailed description of the pharmacologic profile of a selective JNK inhibitor. ArticleCASPubMedPubMed Central Google Scholar
Han, Z., Chang, L., Yamanishi, Y., Karin, M. & Firestein, G. S. Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collagen-induced arthritis. Arthritis Rheum.46, 818–823 (2002). ArticleCASPubMed Google Scholar
Eynott, P. R., Adcock, I. M. & Chung, P. The effects of selective c-Jun N-terminal kinase inhibition in a sensitized Brown Norway rat model of allergic asthma. Am. J. Respir. Crit. Care Med.49, S102 (2001). Google Scholar
Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol.9, 116–125 (1999). ArticleCASPubMed Google Scholar
Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature405, 91–94 (2000). ArticleCASPubMed Google Scholar
Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science282, 2092–2095 (1998). ArticleCASPubMed Google Scholar
Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity9, 575–585 (1998). ArticleCASPubMed Google Scholar
Arbour, N. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8+ T cell-mediated antiviral immunity. J. Exp. Med.195, 801–810 (2002). ArticleCASPubMedPubMed Central Google Scholar
Conze, D. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8+ T cell activation. J. Exp. Med.195, 811–823 (2002). ArticleCASPubMedPubMed Central Google Scholar
Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell77, 727–736 (1994). ArticlePubMed Google Scholar
Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science271, 1272–1276 (1996). ArticleCASPubMed Google Scholar
Rincon, M., Flavell, R. A. & Davis, R. J. Signal transduction by MAP kinases in T lymphocytes. Oncogene20, 2490–2497 (2001) ArticleCASPubMed Google Scholar
Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron22, 667–676 (1999). ArticleCASPubMed Google Scholar
Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature389, 865–870 (1997). ArticleCASPubMed Google Scholar
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270, 1326–1331 (1995). ArticleCASPubMed Google Scholar
Le-Niculescu, H. et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell Biol.19, 751–763 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bruckner, S. R. et al. JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J. Neurochem.78, 298–303 (2001). ArticleCASPubMed Google Scholar
Scheuner, D. et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 (1996). ArticleCASPubMed Google Scholar
Morishima, Y. et al. β-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci.21, 7551–7560 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhu, X. et al. Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease J. Neurochem.76, 435–441 (2001). ArticleCASPubMed Google Scholar
Pei, J -J. et al. Localization of active forms of c-Jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. J. Alzheimer's Dis.3, 41–48 (2001). ArticleCAS Google Scholar
Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A. & Anderton, B. H. Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates Tau protein. J. Neurochem.68, 1736–1744 (1997). ArticleCASPubMed Google Scholar
Shoji, M. et al. JNK activation is associated with intracellular β-amyloid accumulation. Mol. Brain Res.85, 221–233 (2001). Article Google Scholar
Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R. & Anderton, B. H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and p38, and glycogen synthase kinase-3β. J. Neurochem.74, 1587–1595 (2001). Article Google Scholar
Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol.12, 25–31 (1997). CASPubMed Google Scholar
Xia, X. G. et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA98, 10433–10438 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol.1, 120–129 (2000). ArticleCAS Google Scholar
Herdegen, T. et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J. Neurosci.18, 5124–5135 (1998). ArticleCASPubMedPubMed Central Google Scholar
Must, A. et al. The disease burden associated with overweight and obesity. JAMA282, 1523–1529 (1999). ArticleCASPubMed Google Scholar
Facchini, F. S., Hua, N. W., Reaven, G. M. & Stoohs, R. A. Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Rad. Biol. Med.29, 1302–1306 (2000). ArticleCASPubMed Google Scholar
Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature389, 610–614 (1997). ArticleCASPubMed Google Scholar
Withers, D. J. & White, M. F. Insulin action and type 2 diabetes: lessons from knockout mice. Curr. Opin. Endocrinol. Diab.6, 141–145 (1999). ArticleCAS Google Scholar
Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature391, 900–904 (1998). ArticleCASPubMed Google Scholar
Lee, Y. H., Giraud, J., Davis, R. J. & White, M. F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem.278, 2896–2902 (2003). ArticleCASPubMed Google Scholar
Standaert, M. L. et al. Effects of knockout of the protein kinase C β gene on glucose transport and glucose homeostasis. Endocrinology140, 4470–4477 (1999). ArticleCASPubMed Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–337 (2002). ArticleCASPubMed Google Scholar
Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst.93, 1062–1074 (2001). A review of different approaches to Ras inhibition, including targeting JNK. ArticleCASPubMed Google Scholar
Smeal, T., Binetruy, B., Mercola, D. A., Birrer, M. & Karin, M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature354, 494–496 (1991). ArticleCASPubMed Google Scholar
Schutte, J., Minna, J. D. & Birrer, M. J. Deregulated expression of human c-Jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc. Natl Acad. Sci. USA86, 2257–2261 (1989). ArticleCASPubMedPubMed Central Google Scholar
Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-Jun. Mol. Cell Biol.16, 4504–4511 (1996). ArticleCASPubMedPubMed Central Google Scholar
Eferl, R. et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell112, 181–192 (2003). ArticleCASPubMed Google Scholar
Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK) — from inflammation to development. Curr. Opin. Cell Biol.10, 205–219 (1998). ArticleCASPubMed Google Scholar
Potapova, O. et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin. J. Biol. Chem.272, 14041–14044 (1997). ArticleCASPubMed Google Scholar
Potapova, O. et al. c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J. Biol. Chem.275, 24767–24775 (2000). ArticleCASPubMed Google Scholar
Behrens, A., Jochum, W., Sibilia, M. & Wagner, E. F. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene9, 2657–2663 (2000). ArticleCAS Google Scholar
Kennedy, N. J. et al. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev.17, 629–637 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lei, K. et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol. Cell Biol.22, 4929–4942 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, S. et al. The c-Jun NH2-terminal kinase 3 (JNK3) gene: genomic structure, chromosomal assignment, and loss of expression in brain tumors. J. Hum. Genet.46, 182–187 (2001). ArticleCASPubMed Google Scholar
Nishina, H. et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature385, 350–353 (1997). ArticleCASPubMed Google Scholar
Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev.15, 1419–1426 (2001). ArticleCASPubMedPubMed Central Google Scholar
Teng, D. H. et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res.57, 4177–4182 (1997). CASPubMed Google Scholar
Kim, H. L. et al. Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res.61, 2833–2837 (2001). CASPubMed Google Scholar
Yoshida, B. A. et al. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res.59, 5483–5487 (1999). CASPubMed Google Scholar
Yamada, S. D. et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res.62, 6717–6723 (2002). CASPubMed Google Scholar
Hess, P., Pihan, G., Sawyers, C. L., Flavell, R. A. & Davis, R. J. Survival signaling mediated by c-Jun NH2-terminal kinase in transformed B lymphoblasts. Nature Genet.32, 201–205 (2002). ArticleCASPubMed Google Scholar
Dumas, J. Protein kinase inhibitors: emerging pharmacophores 1997–2000. Exp. Opin. Ther. Patents11, 405–429 (2001). An excellent review of the many different kinase inhibitor chemical templates that were identified in the late 1990s. ArticleCAS Google Scholar
Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science281, 533–538 (1998). ArticleCASPubMed Google Scholar
Zhang, F., Strand, A., Robbins, D., Cobb, M. H. & Goldsmith, E. J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature367, 704–711 (1994). ArticleCASPubMed Google Scholar
Wilson, K. P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem.271, 27696–27700 (1996). ArticleCASPubMed Google Scholar
Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure6, 983–991 (1998). The report of the JNK3 crystal structure provided a key tool for the identification of selective JNK inhibitors. ArticleCASPubMed Google Scholar
Bennett, B. L. et al. WO 0112609 (2001).
Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J.371, 199–204 (2003). ArticleCASPubMedPubMed Central Google Scholar