Current development of mTOR inhibitors as anticancer agents (original) (raw)
Vignot, S., Faivre, S., Aguirre, D. & Raymond, E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol.16, 525–537 (2005). ArticleCASPubMed Google Scholar
Larue, L. & Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene24, 7443–7454 (2005). ArticleCASPubMed Google Scholar
Castedo, M., Ferri, K. F. & Kroemer, G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ.9, 99–100 (2002). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). An important review with most references that emphasize PI3K/AKT functions and implications in malignant tumours. ArticleCAS Google Scholar
Inoki, K., Corradetti, M. N. & Guan, K. L. Dysregulation of the TSC–mTOR pathway in human disease. Nature Genet.37, 19–24 (2005). ArticleCASPubMed Google Scholar
Johannessen, C. M. et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl Acad. Sci. USA.102, 8573–8578 (2005). ArticleCASPubMedPubMed Central Google Scholar
Luo, Z., Saha, A. K., Xiang, X. & Ruderman, N. B. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci.26, 69–76 (2005). ArticleCASPubMed Google Scholar
Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell6, 91–99 (2004). ArticleCASPubMed Google Scholar
Lee, L. et al. Efficacy of a rapamycin analog (CCI-779) and IFN-γ in tuberous sclerosis mouse models. Genes Chromosomes Cancer42, 213–227 (2005). ArticleCASPubMed Google Scholar
Thomas, G. & Hall, M. N. TOR signaling and control of control of cell growth. Curr. Opin. Cell Biol.9, 782–787 (1997). ArticleCASPubMed Google Scholar
Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell103, 253–262 (2000). ArticleCASPubMed Google Scholar
Guertin, D. A. & Sabatini, D. M. An expanding role for mTOR in cancer. Trends Mol. Med.11, 353–361 (2005). ArticleCASPubMed Google Scholar
Martin, D. E. & Hall, M. N. The expanding TOR signaling network. Curr. Opin. Cell Biol.17, 158–166 (2005). ArticleCASPubMed Google Scholar
Scott, P. H. et al. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA95, 7772–7777 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nave, B T. et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J.344, 427–431 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hu, Q. et al. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science268, 100–102 (1995). ArticleCASPubMed Google Scholar
Lee, A. V. & Yee, D. Insulin-like growth factors and breast cancer. Biomed. Pharmacother.49, 415–421 (1995). ArticleCASPubMed Google Scholar
Scheid, M. P. & Woodgett, J. R. Phosphatidylinositol 3′ kinase signaling in mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia6, 83–99 (2001). ArticleCASPubMed Google Scholar
Hankinson, S. E. et al. Circulating concentrations of insulin-like growth factor–I and risk of breast cancer. Lancet351, 1393–1396 (1998). ArticleCASPubMed Google Scholar
Smith, G. D., Gunnell, D. & Holly, J. Cancer and insulin-like growth factor-I. A potential mechanism linking the environment with cancer risk. BMJ321, 847–848 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pollack, M. Insulin like growth factor physiology and cancer risk. Eur. J. Cancer36, 1224–1228 (2000). Article Google Scholar
Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl Cancer Inst.92, 1472–1489 (2000). ArticleCASPubMed Google Scholar
Resnicoff, M. & Baserga, R. The role of the insulin-like growth factor–I receptor in transformation and apoptosis. Ann. NY Acad. Sci.842, 76–81 (1998). ArticleCASPubMed Google Scholar
Cheng, J. Q. et al. Akt2, a putative oncogene encoding a member of a subfamily of serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl Acad. Sci. USA89, 9267–9271 (1992). ArticleCASPubMedPubMed Central Google Scholar
Cheng, J. Q. et al. Amplification of AKT 2 in human pancreatic cells and inhibition of Akt 2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA93, 3636–3641 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer64, 280–285 (1995). ArticleCASPubMed Google Scholar
Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA98, 10314–10319 (2001). This paper describes the crucial role of PTEN and PTEN deletions as well as the effects of mTOR inhibitors usingin vivomodels. ArticleCASPubMedPubMed Central Google Scholar
Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science277, 99–101 (1997). ArticleCASPubMed Google Scholar
Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem.272, 26457–26463 (1997). ArticleCASPubMed Google Scholar
Chung, J. et al. PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature370, 71–75 (1994). ArticleCASPubMed Google Scholar
Gingras, A. C. et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev.12, 502–513 (1998). ArticleCASPubMedPubMed Central Google Scholar
Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science277, 99–101 (1997). ArticleCASPubMed Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR actions. Cell110, 177–189 (2002). ArticleCASPubMed Google Scholar
Kim, D.-H. et al. MTOR interacts with raptor to form a nutriement –sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). ArticleCASPubMed Google Scholar
Pain, V. M. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem.236, 747–771 (1996). ArticleCASPubMed Google Scholar
Sonenberg, N. & Gingras, A. C. The m RNA 5′ cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol.10, 268–275 (1998). ArticleCASPubMed Google Scholar
Smith, M. R. et al. Translation initiation factors induce DNA synthesis and transform NIH 3T3 cells. New Biol.2, 648–654 (1990). CASPubMed Google Scholar
Rousseau, D. et al. The eIF4E-binding protein 1 and 2 are negative regulators of cell growth. Oncogene13, 2415–2420 (1996). CASPubMed Google Scholar
Easton, J. B., Kurmasheva, R. T. & Houghton, P. J. IRS-1: auditing the effectiveness of mTOR inhibitors. Cancer Cell9, 153–155 (2006). ArticleCASPubMed Google Scholar
Mendez, R. et al. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidyl inositol 3 kinase. Mol. Cell Biol.16, 5991–6001 (1996). Article Google Scholar
Rosenwald, I. B. et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.270, 21176–21180 (1995). ArticleCASPubMed Google Scholar
Rousseau, D. et al. Translation initiation of ornithine decarboxylase and nuceocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl Acad. Sci. USA93, 1065–1070 (1996). ArticleCASPubMedPubMed Central Google Scholar
Berretta, L. et al. Rapamycin blocks the phos-phorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EBMO J.15, 658–664 (1996). Google Scholar
Graves, L. M. et al. c-AMP –and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl Acad. Sci. USA92, 7222–7226 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lin, T. A. et al. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin — sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem.270, 18531–18538 (1995). ArticleCASPubMed Google Scholar
Dilling, B. D. et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J. Biol. Chem.277, 13907–13917 (2002). ArticleCASPubMed Google Scholar
Von Manteuffel, S. et al. 4E-Bp1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA93, 4076–4080 (1996). ArticleCASPubMedPubMed Central Google Scholar
Brunn, G. J. et al. Three mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J. Biol. Chem.272, 32547–32550 (1997). ArticleCASPubMed Google Scholar
Fadden, P. Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem.272, 10240–10247 (1997). ArticleCASPubMed Google Scholar
Herbert, P. T., Tee, A. R. & Proud, C. G. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J. Biol. Chem.277, 11591–11596 (2002). ArticleCASPubMed Google Scholar
Di Como, C. J. & Arndt, K. T. Nutrients, via TOR proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev.10, 1904–1916 (1996). ArticleCASPubMed Google Scholar
Murata, K., Wu, J. & Brautigan, D. L. B cell receptor-associated protein α4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc. Natl Acad. Sci. USA148, 71–82 (1997). Google Scholar
Park, I.-H. et al. Regulation of ribosomal S6 kinase 2 by mammalian target of Rapamycin. J. Biol. Chem.277, 31423–31429 (2002). ArticleCASPubMed Google Scholar
Seufferlein, T. & Rozengurt, E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res.56, 3895–3897 (1996). CASPubMed Google Scholar
Brown EJ, Beal PA, Keith CT et al. Control of p70s6 kinase by kinase activity of FRAP in vivo. Nature377, 441–446 (1995). ArticleCASPubMed Google Scholar
Burnett, P. E. et al. RAFT 1 phosphorylation of the translational regulators p70 s6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA95, 1432–1437 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dennis, P. B. et al. The principal rapamycin-sensitive p70s6k phosphorylation sites T229 and T389 are differentially regulated by rapamycin-insensitive kinase-kinases. Mol. Cell Biol.16, 6242–6251 (1996). ArticleCASPubMedPubMed Central Google Scholar
Begum, N. & Ragolia, L. cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J. Biol. Chem.271, 31166–31171 (1996). ArticleCASPubMed Google Scholar
Nourse, J. et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature372, 570–573 (1994). ArticleCASPubMed Google Scholar
Grewe., M. et al. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res.59, 3581–3587 (1999). CASPubMed Google Scholar
Kawamata, S. et al. The upregulation of p27Kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines. Blood91, 561–569 (1998). CASPubMed Google Scholar
Hashemolhosseini, S. et al. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem.273, 14424–14429 (1998). ArticleCASPubMed Google Scholar
Morice, W. G. et al. Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J. Biol. Chem.268, 22737–22745 (1993). CASPubMed Google Scholar
Rosenwald, I. B. et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.270, 21176–21180 (1995). ArticleCASPubMed Google Scholar
Mahajan, P. B. Modulation of transcription of rRNA genes by rapamycin. Int. J. Immunopharmacol.16, 711–721 (1994). ArticleCASPubMed Google Scholar
Leicht, M. et al. Okadaic acid induces cellular hypertrophy in AKR-2B fibroblasts: involvment of the p70S6 kinase in the onset of protein and rRNA synthesis. Cell Growth Differ.7, 1199–1209 (1996). CASPubMed Google Scholar
White, R. J. Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control? Trends Biochem. Sci.22, 77–80 (1997). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). ArticleCASPubMed Google Scholar
Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA102, 8204–8209 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kanamori, Y. et al. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin. Cancer Res.7, 892–895 (2001). CASPubMed Google Scholar
Uegaki, K. et al. PTEN-positive and phosphorylated-Akt-negative expression is a predictor of survival for patients with advanced endometrial carcinoma. Oncol. Rep.14, 389–392 (2005). CASPubMed Google Scholar
Soliman, P. T. et al. mTOR inhibition as a potential treatment for progesterone-refractory endometrial hyperplasia. Proc. Am. Soc. Clin. Oncol.23, 474s, A5080 (2005).
Choe, G. et al. Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res.63, 2742–2746 (2003). CASPubMed Google Scholar
Chakravarti, A. et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol.22, 1926–1933 (2004). ArticleCASPubMed Google Scholar
Chandrasekar, N. et al. Downregulation of uPA inhibits migration and PI3k/Akt signaling in glioblastoma cells. Oncogene22, 392–400 (2003). ArticleCASPubMed Google Scholar
Frisk, T. et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer35, 74–80 (2002). ArticleCASPubMed Google Scholar
Virolle, T. et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nature Cell Biol.3, 1124–1128 (2001). ArticleCASPubMed Google Scholar
Tell, G. et al. Control of phosphatase and tensin homolog (PTEN) gene expression in normal and neoplastic thyroid cells. Endocrinology145, 4660–4666 (2004). ArticleCASPubMed Google Scholar
Lee, H. Y. et al. Evidence that phosphatidylinositol 3-Kinase-and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent pathways cooperate to maintain lung cancer cell survival. J. Biol. Chem.278, 23630–23638 (2003). ArticleCASPubMed Google Scholar
Marsit, C. J. et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum. Pathol.36, 768–776 (2005). ArticleCASPubMed Google Scholar
Ferraro, B., Bepler, G., Sharma, S., Cantor, A. & Haura, E. B. EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J. Clin. Oncol.23, 1921–1926 (2005). ArticleCASPubMed Google Scholar
Su, T. H. et al. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in cervical cancer. Gynecol. Oncol.76, 193–199 (2000). ArticleCASPubMed Google Scholar
Harima, Y. et al. Mutation of the PTEN gene in advanced cervical cancer correlated with tumor progression and poor outcome after radiotherapy. Int. J. Oncol.18, 493–497 (2001). CASPubMed Google Scholar
Cheung, T. H. et al. Epigenetic and genetic alternation of PTEN in cervical neoplasm. Gynecol. Oncol.93, 621–627 (2004). ArticleCASPubMed Google Scholar
Tsutsui, S. et al. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology68, 398–404 (2005). ArticleCASPubMed Google Scholar
Shoman, N. et al. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod. Pathol.18, 250–259 (2005). ArticleCASPubMed Google Scholar
Saal, L. H. et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.65, 2554–2559 (2005). ArticleCASPubMed Google Scholar
Kirkegaard, T. et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J. Pathol.207, 139–146 (2005). ArticleCASPubMed Google Scholar
Saito, M. et al. Allelic imbalance and mutations of the PTEN gene in ovarian cancer. Int. J. Cancer85, 160–165 (2000). ArticleCASPubMed Google Scholar
Levine, D. A. et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin. Cancer Res.11, 2875–2878 (2005). ArticleCASPubMed Google Scholar
Koksal, I. T. et al. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Urol. Oncol.22, 307–312 (2004). ArticleCASPubMed Google Scholar
Pfeil, K. et al. Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate58, 259–268 (2004). ArticleCASPubMed Google Scholar
Edwards, J., Krishna, N. S., Witton, C. J. & Bartlett, J. M. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin. Cancer Res.9, 5271–5281 (2003). CASPubMed Google Scholar
Okami, K. et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumours. Cancer Res.58, 509–511 (1998). CASPubMed Google Scholar
Kubo, Y., Urano, Y., Hida, Y. & Arase, S. Lack of somatic mutation in the PTEN gene in squamous cell carcinoma of human skin. J. Dermatol. Sci.19, 199–201 (1999). ArticleCASPubMed Google Scholar
Aoki, K. et al. Cisplatin activates survival signals in UM-SCC-23 squamous cell carcinoma and these signal pathways are amplified in cisplatin-resistant squamous cell carcinoma. Oncol. Rep.11, 375–379 (2004). CASPubMed Google Scholar
Khaleghpour, K., Li, Y., Banville, D., Yu, Z. & Shen, S. H. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis25, 241–248 (2004). ArticleCASPubMed Google Scholar
Velho, S. et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer41, 1649–1654 (2005). ArticleCASPubMed Google Scholar
Agbunag, C. & Bar-Sagi, D. Oncogenic K-ras drives cell cycle progression and phenotypic conversion of primary pancreatic duct epithelial cells. Cancer Res.64, 5659–5663 (2004). ArticleCASPubMed Google Scholar
Altomare, D. A. et al. Frequent activation of AKT2 kinase in human pancreatic carcinomas. J. Cell Biochem.88, 470–476 (2003). CAS Google Scholar
Oki, E. et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int. J. Cancer117, 376–380 (2005). ArticleCASPubMed Google Scholar
Zhang, L., Yu, Q., He, J. & Zha, X. Study of the PTEN gene expression and FAK phosphorylation in human hepatocarcinoma tissues and cell lines. Mol. Cell Biochem.262, 25–33 (2004). ArticleCASPubMed Google Scholar
Ma, D. Z. et al. Down-regulation of PTEN expression due to loss of promoter activity in human hepatocellular carcinoma cell lines. World J. Gastroenterol.11, 4472–4477 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo)28, 721–726 (1975). ArticleCAS Google Scholar
Yatscoff, R. W., LeGatt, D. F. & Kneteman, N. M. Therapeutic monitoring of rapamycin: a new immunosuppressive drug. Ther. Drug Monit.15, 478–482 (1993). ArticleCASPubMed Google Scholar
Davies, C. B. et al. Effect of a short course of rapamycin, cyclosporin A, and donor-specific transfusion on rat cardiac allograft survival. Transplantation55, 1107–1112 (1993). ArticleCASPubMed Google Scholar
Kahan, B. D. Optimization of cyclosporine therapy. Transplant. Proc.25, 5–9 (1993). CASPubMed Google Scholar
Trepanier, D. J. et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin. Biochem.31, 345–351 (1998). ArticleCASPubMed Google Scholar
Kauffman, H. M., Cherikh, W. S., Cheng, Y., Hanto, D. W. & Kahan, B. D. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation80, 883–889 (2005). ArticleCASPubMed Google Scholar
Gallo, R. et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation99, 2164–2170 (1999). ArticleCASPubMed Google Scholar
Sousa, J. E. et al. Use of rapamycin-impregnated stents in coronary arteries. Transplant. Proc.35, 165S–170S (2003). ArticleCASPubMed Google Scholar
Mohacsi, P. J. et al. Different inhibitory effects of immunosuppressive drugs on human and rat aortic smooth muscle and endothelial cell proliferation stimulated by platelet-derived growth factor or endothelial cell growth factor. J. Heart Lung Transplant.16, 484–492 (1997). CASPubMed Google Scholar
Martin, D. E. & Hall, M. N. The expanding TOR signaling network. Curr. Opin. Cell. Biol.17, 158–166 (2005). ArticleCASPubMed Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). ArticleCASPubMed Google Scholar
Li, X., Alafuzoff, I., Soininen, H., Winblad, B. & Pei, J. J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer's disease brain. FEBS J.272, 4211–4220 (2005). ArticleCASPubMed Google Scholar
Nardacci, R. et al. Characterization of cell death pathways in human immunodeficiency virus-associated encephalitis. Am. J. Pathol.167, 695–704 (2005). ArticleCASPubMedPubMed Central Google Scholar
Castedo, M. et al. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J.21, 4070–4080 (2002). ArticleCASPubMedPubMed Central Google Scholar
Busca, R. et al. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem.271, 31824–31830 (1996). ArticleCASPubMed Google Scholar
Grewe, M. et al. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP–p70s6K pathway in human pancreatic cancer cells. Cancer Res.59, 3581–3587 (1999). CASPubMed Google Scholar
Hosoi, H. et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res.59, 886–894 (1999). CASPubMed Google Scholar
Shi, Y. et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res.55, 1982–1988 (1995). CASPubMed Google Scholar
Calastretti, A. et al., Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase. Oncogene20, 6172–6180 (2001). ArticleCASPubMed Google Scholar
Balcarcel, R. R. & Stephanopoulos, G. Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnol. Bioeng.76, 1–10 (2001). ArticleCASPubMed Google Scholar
Humar, R. et al. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J.16, 771–780 (2002). A report on the role of hypoxia and consequences in activation of cell signalling in endothelial cells, proliferation and tumour angiogenesis. ArticleCASPubMed Google Scholar
Castedo, T. et al. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J.21, 4070–4080 (2002). ArticleCASPubMedPubMed Central Google Scholar
Decaudin, D. et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res.57, 62–67 (1997). CASPubMed Google Scholar
Zangemeister-Wittke, U. et al. A novel bispecific antisense oligonucleotide inhibiting both BCL-2 and BCL-xL expression efficiently induces apoptosis in tumor cells. Clin. Cancer Res.6, 2547–2555 (2000). CASPubMed Google Scholar
Shinjyo, T. et al. Downregulation of bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol. Cell Biol.21, 854–864 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shinoura, N. et al. Expression level of bcl-2 determines anti- or proapoptotic function. Cancer Res.59, 4119–4128 (1999). CASPubMed Google Scholar
Aguirre, D. et al. Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis9, 797–805 (2004). This paper underlines the role of BCL2 expression as a molecular factor of resistance to mTOR inhibitors in human cancer cells. ArticleCASPubMed Google Scholar
Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med.8, 128–135 (2002). Describes the modulation of cross-talk between PI3K/AKT and VEGF signalling pathways by rapamycin. ArticleCASPubMed Google Scholar
Humar, R., Kiefer, F. N., Berns, H., Resink, T. J. & Battegay, E. J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J.16, 771–780 (2002). ArticleCASPubMed Google Scholar
Arsham, A. M., Plas, D. R., Thompson, C. B. & Simon, M. C. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1α nor sufficient for HIF-1-dependent target gene transcription. J. Biol. Chem.277, 15162–15170 (2002). ArticleCASPubMed Google Scholar
Trisciuoglio, D., Iervolino, A., Zupi, G. & Del Bufalo, D. Involvment of PI3K and MAPK signaling in bcl-2-induced vascular endothelial growth factor expression in melanoma cells. Mol. Biol. Cell16, 4153–4162 (2005). ArticleCASPubMedPubMed Central Google Scholar
Costa, L. F., Balcells, M., Edelman, E. R., Nadler, L. M. & Cardoso, A. A. Pro-angiogenic stimultation of bone marrow endothelium engages mTOR, and is inhibited by simultaneous blockade of mTOR and NF-κB. Blood107, 285–292 (2006). ArticleCASPubMedPubMed Central Google Scholar
Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Med.12, 122–127 (2006). ArticleCASPubMed Google Scholar
Raymond, E. et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J. Clin. Oncol.16, 2336–2347 (2004). This paper reports the first-in-man experience (phase I trial) using CCI-779 (temsirolimus, a potent mTOR inhibitor) in patients with advanced cancers, describing the first evidence of antitumour activity in patients with renal cell carcinoma. ArticleCAS Google Scholar
Hidalgo, M. et al. CCI-779, a rapamycin analog and multifaceted inhibitor of signal transduction: a phase I study. Proc. Am. Soc. Clin. Oncol.19, 187a, A726 (2000).
O'Donnell, A. et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumors. Proc. Am. Soc. Clin. Oncol.22, 200, A803 (2003).
Mita, M. AP23573, an mTOR inhibitor, administered IV daily × 5 every other week in patients with refractory or advanced malignancies — a phase I, pharmacokinetic (PK), and pharmacodynamic (PD) study. Proc. 16th Symp. Mol. Targets Cancer Thera. Geneva, Switzerland, October, 122 A409 (2004). Google Scholar
Oza, A. M. et al. A phase II study or tensirolimus (CCI-779) in patients with metastatic and/or locally recurrent endometrial cancer. Proc. 17th Symp. Mol. Targets Cancer Thera. Philadelphia, USA, November, 197 AB269 (2005). Google Scholar
Galanis, E. et al. Phase II trial of tensirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23, 5294–5304 (2005). ArticleCASPubMed Google Scholar
Chang, S. M. et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23, 357–361 (2005). ArticleCASPubMed Google Scholar
Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–198 (2004). ArticleCASPubMed Google Scholar
Hudes, G. et al. A phase 3, randomised, 3-arm study of temsirolimus (TEMSR) or interferon-α (IFN) or the combination of TEMSR + IFR in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma. J. Clin. Oncol.24, Abs. LBA 4, 18S (2006). Google Scholar
Amato, R. J., Misellati, A., Khan, M. & Chiang, S. A phase II trial of RAD001 in patients wih metastatic renal cell carcinoma. J. Clin. Oncol.24, A4530, 18S (2006).
Chan, S. et al. Phase II study of tensirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol.23, 5314–5322 (2005). ArticleCASPubMed Google Scholar
Witzig, T. E. et al. Phase II trial of single-agent tensirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol.23, 5347–5356 (2005). A report of the remarkable antitumour activity of CCI-779 (temsirolimus) in mantle cell lymphoma, a disease driven by cyclin D1 overexpression that can be controlled using mTOR inhibitors. ArticleCASPubMed Google Scholar
Ansell, S. M. et al. Anti-tumor activity of mTOR inhibitor temsirolimus for relapse mantle cell lymphoma: a phase II trial in the North Central Cancer Treatment Group. J. Clin. Oncol.24 18S, A7532 (2006).
Yao, J. C. et al. Phase II study of RAD001 (everolimus) and depot octreotide (sandostatine LAR) in patients with advanced low grade neuroendocrine carcinoma. J. Clin. Oncol.24, 18S, A4042 (2006).
Duran, I. et al. A phase II trial of temsirolimus in metastatic neuroendocrine carcinoma. Proc. Am. Soc. Clin. Oncol.24, 824s, A146 (2005).
von Oosterom, A. et al. A phase I/II trial of the oral mTOR-inhibitor everolimus (E) and imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM: study update. Proc. Am. Soc. Clin. Oncol.24, 824s, A9033 (2005).
Chawla, S. P. et al. A phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcoma. Proc. 17th Symp. Mol. Targets Cancer Thera., Philadelphia, USA, November, 268 AC272 (2005). Google Scholar
Boulay, A. et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res.64, 252–261 (2004). This research paper reports that S6K1 phosphorylation can be used as a molecular marker for mTOR inhibitors in peripheral blood mononuclear cells, paving the way for the use of S6K1 in translational clinical research. ArticleCASPubMed Google Scholar
Duran, I. et al. Pharmacodynamic evaluations of paired tumor biopsies in advanced neuroendocrine carcinomas (NECs) treated with the mTOR inhibitor tensirolimus. Proc. 17th Symp. Mol. Targets Cancer Thera., Philadelphia, USA, November, 230 AC128 (2005).
Paralba, J. M. et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res.9, 2887–2892 (2003). Google Scholar
Tabernero, J. et al. A phase I study with tumor molecular pharmacodynamic (MPD) evaluation of dose and schedule of the oral mTOR inhibitor everolimus (RAD001) in patients (pts) with advanced solid tumors. Proc. Am. Soc. Clin. Oncol.24, 193s, A3007 (2005).
Reardon, D. A. et al. A phase I trial of AP23573, a novel mTOR inhibitor, in patients (pts) with recurrent malignant glioma. Proc. 17th Symp. Mol. Targets Cancer Thera., Philadelphia, USA, November, 105 AC195 (2005).
Rivera, V. et al. Pharmacodynamic evaluation of the mTOR inhibitor AP23573 in phase I clinical trials. Proc. 16th Symp. Mol. Targets Cancer Thera. Geneva, Switzerland, October, 123 A411 (2004).
Rivera, V. M. et al. Pharmacodynamic study of skin biopsy specimens in patients (pts) with refractory or advanced malignancies following administration of AP23573, an mTOR inhibitor. Proc. Am. Soc. Clin. Oncol.24, 200s, A3033 (2005).
Sankhala, K. K. et al. Early response evaluation of therapy with AP23573 (an mTOR inhibitor) in sarcoma using [18F]2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) scan. Proc. Am. Soc. Clin. Oncol.24, 823s, A9028 (2005).
Cho, D. C. et al. Low expression of surrogates for mTOR pathway activation predicts resistance to CCI-779 in patients with advanced renal cell carcinoma (RCC). Proc. 17th Symp. Mol. Targets Cancer Thera. Philadelphia, USA, November, 233 C137 (2005). Google Scholar
Diehl, K. M. et al. In-vitro studies of rapamycin treatment of osteosarcoma cell lines. Proc. 17th Symp. Mol. Targets Cancer Thera., Philadelphia, USA, November, 210 AC53 (2005). Google Scholar
Shah, O. J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol.14, 1650–1656 (2004). ArticleCASPubMed Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Cheng, J. Q. et al. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene24, 7482–7492 (2005). ArticleCASPubMed Google Scholar
Guertin, D. A. & Sabatini, D. M. An expanding role for mTOR in cancer. Trends Mol. Med.11, 353–361 (2005). ArticleCASPubMed Google Scholar
Takeuchi, H. et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res.65, 3336–3346 (2005). ArticleCASPubMed Google Scholar
Sun, S. Y. et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res.65, 7052–7058 (2005). ArticleCASPubMed Google Scholar
Oki, E. et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int. J. Cancer117, 376–380 (2005). ArticleCASPubMed Google Scholar
Aoki, K. et al. Cisplatin activates survival signals in UM-SCC-23 squamous cell carcinoma and these signal pathways are amplified in cisplatin-resistant squamous cell carcinoma. Onc. Rep.11, 375–379 (2004). CAS Google Scholar
Beuvink, I. et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell120, 747–759 (2005). ArticleCASPubMed Google Scholar
Dong, J. et al. Role of glycogen synthase kinase 3β in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res.65, 1961–1972 (2005). ArticleCASPubMed Google Scholar
Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell6, 117–127 (2004). An exploration of the functional role of PTEN for sensitivity to trastuzumab, a HER2 inhibitor, in breast cancer cells. ArticleCASPubMed Google Scholar
Kokubo, Y. et al. Reduction of PTEN protein and lss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br. J. Cancer92, 1711–1719 (2005). ArticleCASPubMedPubMed Central Google Scholar
Milton, D. T. et al. PhaseI/II trial of gefitinib and RAD001 (everolimus) in patients (pts) with advanced non-small cell lung cancer (NSCLC). Proc. Am. Soc. Clin. Oncol.24, 646s, A7104 (2005).
deGraffenried, L. A. et al. Inhibition of mTOR activity restores tamoxifene response in breast cancer cells with aberant Akt activity. Clin. Cancer Res.10, 8059–8067 (2004). ArticleCASPubMed Google Scholar