New therapeutic strategies for the treatment of acute lymphoblastic leukaemia (original) (raw)
Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med.354, 166–178 (2006). A comprehensive review of the central role leukaemia biology and host factors have in the design of effective therapies for ALL. ArticleCASPubMed Google Scholar
Oeffinger, K. C. & Hudson, M. M. Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J. Clin.54, 208–236 (2004). ArticlePubMed Google Scholar
Pui, C. H. et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N. Engl. J. Med.349, 640–649 (2003). ArticlePubMed Google Scholar
Pui, C. H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. N. Eng. J. Med.350, 1535–1548 (2004). A review of the pathobiology of ALL, emphasizing results that are likely to have the greatest impact on clinical management in the coming decade. ArticleCAS Google Scholar
Armstrong, S. A. & Look, A. T. Molecular genetics of acute lymphoblastic leukemia. J. Clin. Oncol.23, 6306–6315 (2005). Informative review of the signal-transduction pathways in ALL, and the role gene expression has in the classification of ALL and the design of molecularly targeted therapy. ArticleCASPubMed Google Scholar
Pui, C. H. & Evans, W. E. Acute lymphoblastic leukemia. N. Engl. J. Med.339, 605–615 (1998). ArticleCASPubMed Google Scholar
Pui, C. H., Campana, D. & Evans, W. E. Childhood acute lymphoblastic leukaemia — current status and future perspectives. Lancet Oncol.2, 597–607 (2001). ArticleCASPubMed Google Scholar
Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell.1, 75–87 (2002). ArticleCASPubMed Google Scholar
Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell.1, 133–143 (2002). ArticleCASPubMed Google Scholar
Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet.30, 41–47 (2002). ArticleCASPubMed Google Scholar
Haferlach, T. et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood106, 1189–1198 (2005). ArticleCASPubMed Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). This report describes a new, bead-based flow cytometric microRNA-expression-profiling method, and highlights the potential of microRNA in cancer diagnosis. ArticleCASPubMed Google Scholar
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004). A report on the presence of activating mutations in more than 50% of human T-cell ALL, providing a strong rationale for targeted therapies that interfere with NOTCH signalling. ArticleCASPubMed Google Scholar
Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell.2, 103–112 (2002). ArticleCASPubMed Google Scholar
Krug, U., Ganser, A. & Koeffler, H. P. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene21, 3475–3495 (2002). ArticleCASPubMed Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). ArticleCAS Google Scholar
Avramis, V. I. et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood99, 1986–1994 (2002). ArticleCASPubMed Google Scholar
Abshire, T. C., Pollock, B. H., Billett, A. L., Bradley, P. & Buchanan, G. R. Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood96, 1709–1715 (2000). CASPubMed Google Scholar
Hak, L. J. et al. Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia18, 1072–1077 (2004). ArticleCASPubMed Google Scholar
Moghrabi, A. et al. Results of the Dana–Farber Cancer Institute ALL Consortium protocol 95-01 for children with acute lymphoblastic leukemia. Blood 26 Sep 2006 (doi:10.1182/blood-2006-06-027714 ).
Bomgaars, L. et al. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J. Clin. Oncol.22, 3916–3921 (2004). ArticleCASPubMed Google Scholar
Glantz, M. J. et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J. Clin. Oncol.17, 3110–3116 (1999). ArticleCASPubMed Google Scholar
Jabbour, E. et al. Neurological complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood 5 Jan 2007 (doi:10.1182/blood-2006-08-043646).
Offidani, M. et al. Comparison of two regimens for the treatment of elderly patients with acute lymphoblastic leukemia (ALL). Leuk. Lymphoma46, 233–238 (2005). ArticleCASPubMed Google Scholar
Consoli, U. et al. The novel anthracycline annamycin is not affected by P-glycoprotein-related multidrug resistance: comparison with idarubicin and doxorubicin in HL-60 leukemia cell lines. Blood88, 633–644 (1996). CASPubMed Google Scholar
Zou, Y., Priebe, W., Stephens, L. C. & Perez-Soler, R. Preclinical toxicity of liposome-incorporated annamycin: selective bone marrow toxicity with lack of cardiotoxicity. Clin. Cancer Res.1, 1369–1374 (1995). CASPubMed Google Scholar
Boman, N. L., Bally, M. B., Cullis, P. R., Mayer, L. D. & Webb, M. S. Encapsulation of vincristine in liposomes reduces its toxicity and improves its antitumor efficacy. J. Liposome Res.5, 523–541 (1995). ArticleCAS Google Scholar
Gelmon, K. A. et al. Phase I study of liposomal vincristine. J. Clin. Oncol.17, 697–705 (1999). ArticleCASPubMed Google Scholar
Thomas, D. A. et al. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer106, 120–127 (2006). ArticleCASPubMed Google Scholar
Walling, J. From methotrexate to premetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest. New Drugs24, 37–77 (2006). ArticlePubMed Google Scholar
Sarris, A. H. et al. Trimetrexate in relapsed T-cell lymphoma with skin involvement. J. Clin. Oncol.20, 2876–2880 (2002). ArticleCASPubMed Google Scholar
O'Connor, O. et al. Pralatrexate (10-propargyl-10-deazaaminopterin (PDX), a novel antifolate, effects durable complete remissions (CR) in patients with a diversity of drug resistant T-cell lymphomas with minimal toxicity. Blood106, 752a (2005). Google Scholar
Wang, E. S., Connor, O., She, Y., Zelenetz, A. D., Sirotnak, F. M. & Moore, M. A. Activity of a novel anti-folate (PDX, 10-propargyl-10-deazaaminoptin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. Leuk. Lymphoma44, 1027–1035 (2003). ArticleCASPubMed Google Scholar
Toner, L. E. et al. The schedule-dependent effects of the novel antifolate pralatrexate and gemcitabine are superior to methotrexate and cytarabine in models of human non-Hodgkin's lymphoma. Clin. Cancer Res.12, 924–932 (2006). ArticleCASPubMed Google Scholar
Villela, L. R., Stanford, B. L. & Shah, S. R. Pemetrexed, a novel antifolate therapeutic alternative for cancer chemotherapy. Pharmacotherapy26, 641–654 (2006). ArticleCASPubMed Google Scholar
Parker, W. B. et al. Effects of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl) adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerase by its 5′-triphosphate. Cancer Res.51, 2386–2394 (1991). CASPubMed Google Scholar
Santana, V. M. et al. A phase I clinical trial of 2-chlorodeoxyadenosine in pediatric patients with acute leukemia. J. Clin. Oncol.9, 416–422 (1991). ArticleCASPubMed Google Scholar
Kornblau, S. M. et al. Clinical and laboratory studies of 2-chlorodeoxyadenosine +/− cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia10, 1563–1569 (1996). CASPubMed Google Scholar
Van Den Neste, E. et al. 2-Chlorodeoxyadenosine with or without daunorubicin in relapsed or refractory acute myeloid leukemia. Ann. Hematol.76, 19–23 (1998). ArticleCASPubMed Google Scholar
Holowiecki, J. et al. Addition of cladribine to daunorubicin and cytarabine increases complete remission rate after a single course of induction treatment in acute myeloid leukemia. Multicenter, phase III study. Leukemia18, 989–997 (2004). ArticleCASPubMed Google Scholar
Vahdat, L. et al. Therapeutic and neurotoxic effects of 2-chlorodeoxyadenosine in adults with acute myeloid leukemia. Blood84, 3429–3434 (1994). CASPubMed Google Scholar
Warrell, R. P. Jr & Berman, E. Phase I and II study of fludarabine phosphate in leukemia: therapeutic efficacy with delayed central nervous system toxicity. J. Clin. Oncol.4, 74–79 (1986). ArticlePubMed Google Scholar
Montgomery, J. A., Shortnacy-Fowler, A. T., Clayton, S. D., Riordan, J. M. & Secrist, J. A. 3rd. Synthesis and biologic activity of 2′-fluoro-2-halo derivatives of 9-β-D-arabinofuranosyladenine. J. Med. Chem.35, 397–401 (1992). ArticleCASPubMed Google Scholar
Avramis, V. I. & Plunkett, W. 2-fluoro-ATP: a toxic metabolite of 9-β-D-arabinosyl-2-fluoroadenine. Biochem. Biophys. Res. Comm.113, 35–43 (1983). ArticleCASPubMed Google Scholar
Kantarjian, H. M. et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J. Clin. Oncol.21, 1167–1173 (2003). ArticleCASPubMed Google Scholar
Kantarjian, H. et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood102, 2379–2386 (2003). ArticleCASPubMed Google Scholar
Jeha, S. et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood103, 784–789 (2004). ArticleCASPubMed Google Scholar
Jeha, S. et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J. Clin. Oncol.24, 1917–1923 (2006). References 49 and 50 report the paediatric trials that led to the accelerated clofarabine approval to treat children with ALL whose disease had not responded to or had relapsed following at least two prior regimens. ArticleCASPubMed Google Scholar
Giblett, E. R., Ammann, A. J., Wara, D. W., Sandman, R. & Diamond, L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet1, 1010–1013 (1975). ArticleCASPubMed Google Scholar
Cohen, A., Lee, J. W. & Gelfand, E. W. Selective toxicity of deoxyguanosine and arabinosylguanine for T-leukemic cells. Blood61, 660–666 (1983). CASPubMed Google Scholar
Reist, E. J. & Goodman, L. Synthesis of 9-β-D-arabinofuranosylguanine. Biochemistry3, 15–18 (1964). ArticleCASPubMed Google Scholar
Kurtzberg, J. et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J. Clin. Oncol.23, 3396–3403 (2005). ArticleCASPubMed Google Scholar
Berg, S. L. et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's Oncology Group. J. Clin. Oncol.23, 3376–3382 (2005). References 54 and 55 report the trials that led to the accelerated nelarabine approval to treat adults and children with T-cell ALL and T-cell lymphoblastic lymphoma whose disease had not responded to or had relapsed following at least two prior regimens. ArticleCASPubMed Google Scholar
Miles, R. W., Tyler, P. C., Furneaux, R. H., Bagdassarian, C. K. & Schramm, V. L. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry37, 8615–8641 (1998). ArticleCASPubMed Google Scholar
Bantia, S. et al. Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H) — a novel potent and orally active immunosuppressive agent. Int. Immunopharm.1, 1199–1210 (2001). ArticleCAS Google Scholar
Gandhi, V. et al. A proof-of-principle pharmacokinetic, pharmacodynamic, and clinical study with purine nucleoside phosphorylase inhibitor immucillin-H (BCX-1777, forodesine). Blood106, 4253–4260 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schulz, H. et al. Intraventricular treatment of relapsed central nervous system lymphoma with the anti-CD20 antibody rituximab. Haematol.89, 753–754 (2004). CAS Google Scholar
Stasi, R., Pagano, A., Stipa, E. & Amadori, S. Rituximab chimeric anti-CD20 monoclonal antibody treatment for adults with chronic idiopathic thrombocytopenic purpura. Blood98, 952–957 (2001). ArticleCASPubMed Google Scholar
Leandro, M. J., Edwards, J. C., Cambridge, G., Ehrenstein, M. R. & Isenberg, D. A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum.46, 2673–2677 (2002). ArticlePubMed Google Scholar
Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med.346, 235–242 (2002). ArticleCASPubMed Google Scholar
Thomas, D. A. et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer106, 1569–1580 (2006). ArticleCASPubMed Google Scholar
Thomas, D. A. et al. Update of the modified hyper-CVAD regimen in newly diagnosed adult acute lymphocytic leukemia (ALL). Blood102, 880a (2003).
Jeha, S. et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood108, 3302–3304 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dillman, R. O. et al. Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies. Clin. Exp. Med.6, 1–12 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leonard, J. P. et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin. Cancer Res.10, 5327–5334 (2004). ArticleCASPubMed Google Scholar
Stein, R. et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma. Clin. Cancer Res.10, 2868–2878 (2004). ArticleCASPubMed Google Scholar
Leonard, J. P. et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin's lymphoma. J. Clin. Oncol.23, 5044–5051 (2005). ArticleCASPubMed Google Scholar
Linden, O. et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin. Cancer Res.11, 5215–5222 (2005). ArticleCASPubMed Google Scholar
Uckun, F. M. et al. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood71, 13–29 (1988). CASPubMed Google Scholar
Goulet, A. C. et al. Conjugation of blocked ricin to an anti-CD19 monoclonal antibody increases antibody-induced cell calcium mobilization and CD19 internalization. Blood90, 2364–2375 (1997). CASPubMed Google Scholar
Stone, M. J. et al. A phase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood88, 1188–1197 (1996). CASPubMed Google Scholar
Bae, J., Martinson, J. A. & Klingemann, H. G. Identification of CD19 and CD20 peptides for induction of antigen-specific CTLs against B-cell malignancies. Clin. Cancer Res.11, 1629–1638 (2005). ArticleCASPubMed Google Scholar
Vallera, D. A. et al. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin. Cancer Res.11, 3879–3888 (2005). ArticleCASPubMed Google Scholar
Gilleece, M. H. & Dexter, T. M. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood82, 807–812 (1993). CASPubMed Google Scholar
Piccaluga, P. P. et al. Anti-leukemic and anti-GVHD effects of Campath-1H in acute lymphoblatic leukemia relapsed after stem-cell transplantation. Leuk. Lymphoma45, 731–733 (2004). ArticleCASPubMed Google Scholar
Laporte, J. P. et al. Remission of adult acute lymphocytic leukaemia with alemtuzumab. Leukemia18, 1557–1558 (2004). ArticleCASPubMed Google Scholar
Tibes, R. et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer106, 2645–2651 (2006). ArticleCASPubMed Google Scholar
Stock, W. et al. Incorporation of alemtuzumab into front-line therapy of adult acute lymphoblastic leukemia (ALL) is feasible: a phase I/II study from the Cancer and Leukemia Group B (CALGB 10102). Blood106, 46a (2005). Google Scholar
Sievers, E. L. et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol.19, 3244–3254 (2001). ArticleCASPubMed Google Scholar
Arceci, R. J. et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood106, 1183–1188 (2005). ArticleCASPubMed Google Scholar
Lo-Coco, F. et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood104, 1995–1999 (2004). ArticleCASPubMed Google Scholar
Golay, J. et al. Gemtuzumab ozogamicin (Mylotarg) has therapeutic activity against CD33 acute lymphoblastic leukaemias in vitro and in vivo. Br. J. Haematol.128, 310–317 (2005). ArticleCASPubMed Google Scholar
Zwaan, C. M. et al. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: first clinical experiences and relation with cellular sensitivity to single agent calicheamicin. Leukemia17, 468–470 (2003). References 84 and 85 describein vitro, in vivoand clinical activity of gemtuzumab ozogamycin against CD33+ ALL. ArticleCASPubMed Google Scholar
Cotter, M., Rooney, S., O'Marcaigh, A. & Smith, O. P. Successful use of gemtuzumab ozogamicin in a child with relapsed CD33-positive acute lymphoblastic leukaemia. Br. J. Haematol.122, 687–688 (2003). ArticlePubMed Google Scholar
Balduzzi, A. et al. Molecular remission induced by gemtuzumab ozogamicin associated with donor lymphocyte infusions in t(4;11) acute lymphoblastic leukemia relapsed after transplantation. Leukemia17, 2247–2248 (2003). ArticleCASPubMed Google Scholar
Jedama, I. et al. Internalization and cell cycle-dependent killing of leukemia cells by gemtuzumab ozogamicin: rational for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia18, 316–325 (2004). ArticleCAS Google Scholar
Graux, C. et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature Genet.36, 1084–1089 (2004). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
Champagne, M. A. et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children's Oncology Group phase 1 study. Blood104, 2655–2660 (2004). ArticleCASPubMed Google Scholar
Thomas, D. A. et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood103, 4396–4407 (2004). ArticleCASPubMed Google Scholar
Towatari, M. et al. Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR–ABL-positive acute lymphoblastic leukemia. Blood104, 3507–3512 (2004). References 90 and 91 report the activity of imatinib when used as a single agent in patients with relapsed Ph+ ALL. References 92 and 93 report on the safety and efficacy of administering imatinib in combination with intensive chemotherapy regimens in patients newly diagnosed with Ph+ ALL. ArticleCASPubMed Google Scholar
Rea, D. et al. High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia20, 400–403 (2006). ArticleCASPubMed Google Scholar
Lee, S. et al. The effect of first-line imatinib interim therapy on the outcome of allogeneic stem cell transplantation in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood105, 3449–3457 (2005). ArticleCASPubMed Google Scholar
Wassmann, B. et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood106, 458–463 (2005). ArticleCASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Roche-Lestienne, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood100, 1014–1018 (2002). ArticleCASPubMed Google Scholar
O'Hare, T. et al. In vitro activity of Bcr–Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res.65, 4500–4505 (2005). ArticleCASPubMed Google Scholar
Kantarjian, H. et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med.354, 2542–2551 (2006). ArticlePubMed Google Scholar
Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome positive leukemias. N. Engl. J. Med.354, 2531–2541 (2006). ArticleCASPubMed Google Scholar
Quintas-Cardama, A. et al. Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogeneous leukemia after imatinib and nilotinib (AMN107) therapy failure. Blood 21 Sep 2006 (doi:10.1182/blood-2006-07-035493).
Giles, F. J. et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR–ABL mutation. Blood 21 Sep 2006 (doi:10.1182/blood-2006-05-025049).
Lee, B. H. et al. FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene24, 7882–7892 (2005). ArticleCASPubMed Google Scholar
Smith, B. D. et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood103, 3669–3676 (2004). ArticleCASPubMed Google Scholar
Fiedler, W. et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood105, 986–993 (2005). ArticleCASPubMed Google Scholar
Armstrong, S. A. et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell3, 173–183 (2003). ArticleCASPubMed Google Scholar
Torelli, G. F. et al. FLT3 inhibition in t(4;11)+ adult acute lymphoid leukaemia. Br. J. Haematol.130, 43–50 (2005). ArticleCASPubMed Google Scholar
Brown, P. et al. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood105, 812–820 (2005). ArticleCASPubMed Google Scholar
Levis, M., Pham, R., Smith, B. D. & Small, D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood104, 1145–1150 (2004). ArticleCASPubMed Google Scholar
Piloto, O. et al. IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lymphoblastic leukemia cell lines and primary leukemic samples. Cancer Res.66, 4843–4851 (2006). ArticleCASPubMed Google Scholar
Hoover, R. R., Mahon, F. X., Melo, J. V. & Daley, G. Q. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood100, 1068–1071 (2002). ArticleCASPubMed Google Scholar
Kurzrock, R. et al. Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J. Clin. Oncol.22, 1287–1292 (2004). ArticleCASPubMed Google Scholar
Borthakur, G. et al. Pilot study of lonafarnib, a farnesyl transferase inhibitor, in patients with chronic myeloid leukemia in the chronic or accelerated phase that is resistant or refractory to imatinib therapy. Cancer106, 346–352 (2006). ArticleCASPubMed Google Scholar
Bueso-Ramos, C. et al. Protein expression of a triad of frequently methylated genes, p73, p57Kip2, and p15, has prognostic value in adult acute lymphoblastic leukemia independently of its methylated status. J. Clin. Oncol.23, 3932–3939 (2005). ArticleCASPubMed Google Scholar
Zheng, S. et al. Hypermethylation of the 5′ CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res.64, 2000–2006 (2004). ArticleCASPubMed Google Scholar
Stam, R. W. et al. Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia20, 264–271 (2006). ArticleCASPubMed Google Scholar
Christman, J. K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene21, 5483–5495 (2002). ArticleCASPubMed Google Scholar
Wijermans, P. et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J. Clin. Oncol.18, 956–962 (2000). ArticleCASPubMed Google Scholar
Klisovic, M. I. et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia17, 350–358 (2003). ArticleCASPubMed Google Scholar
Messinger, Y, Reaman, G. H., EK, O. & Uckun, F. M. Evaluation of temozolomide in a SCID mouse model of human B-cell precursor leukemia. Leuk. Lymphoma33, 289–293 (1999). ArticleCASPubMed Google Scholar
Seiter, K. et al. Phase I study of temozolomide in relapsed/refractory acute leukemia. J. Clin. Oncol.20, 3249–3253 (2002). ArticleCASPubMed Google Scholar
Khan, R. B., Raizer, J. J., Malkin, M. G., Bazylewicz, K. A. & Abrey, L. E. A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro-oncol.4, 39–43 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sakajiri, S. et al. Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp. Hematol.33, 53–61 (2005). ArticleCASPubMed Google Scholar
Byrd, J. C. et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood105, 959–967 (2005). ArticleCASPubMed Google Scholar
Inoue, S. et al. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ.11, S193–S206 (2004). ArticleCASPubMed Google Scholar
Nimmanapalli, R., Fuino, L, Stobaugh, C., Richon, V. & Bhalla, K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr–Abl-positive human acute leukemia cells. Blood101, 3236–3239 (2003). ArticleCASPubMed Google Scholar
Batova, A. et al. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood100, 3319–3324 (2002). ArticleCASPubMed Google Scholar
Cutts, S. M., Rephael, A., Nudelman, A., Hmelnitsky, I. & Phillips, D. R. Molecular basis for the synergistic interaction of adriamycin with the formaldehyde-releasing prodrug pivaloyloxymethyl butyrate (AN-9). Cancer Res.61, 8194–8202 (2001). CASPubMed Google Scholar
Avellino, R. et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood106, 1400–1406 (2005). ArticleCASPubMed Google Scholar
Teachey, D. T. et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood107, 1149–1155 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med.183, 2283–2291 (1996). ArticleCASPubMed Google Scholar
Cortes, J. et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin. Cancer Res.10, 3371–3376 (2004). ArticleCASPubMed Google Scholar
Sutheesophon, K. et al. Histone deacetylase inhibitor depsipetide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol.115, 78–90 (2006). ArticleCASPubMed Google Scholar
Arguello, F. et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood91, 2482–2490 (1998). CASPubMed Google Scholar
Almenara, J., Rosato, R. & Grant, S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia16, 1331–1343 (2002). ArticleCASPubMed Google Scholar
Dasmahapatra, G., Almenara, J. A. & Grant, S. Flavopiridol and histone deacetylase inhibitors promote mitochondrial injury and cell death in human leukemia cells that overexpress Bcl-2. Mol. Pharmacol.69, 288–298 (2006). CASPubMed Google Scholar
Rosato, R. R., Dai, Y., Almenara, J. A., Maggio, S. C. & Grant, S. Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation. Leukemia18, 1780–1788 (2004). ArticleCASPubMed Google Scholar
Yu, C., Krystal, G., Dent, P. & Grant, S. Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR–ABL-positive human leukemia cells. Clin. Cancer Res.8, 2976–2984 (2002). CASPubMed Google Scholar
Karp, J. E. et al. Phase I and pharmacokinetic study of flavopiridol followed by 1-β-D-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin. Cancer Res.11, 8403–8412 (2005). ArticleCASPubMed Google Scholar
Banker, D. E. et al. The t(8;21) translocation is not consistently associated with high Bcl-2 expression in de novo acute myeloid leukemias of adults. Clin. Cancer Res.4, 3051–3062 (1998). CASPubMed Google Scholar
Campos, L. et al. Expression of BCL-2 proto-oncogene in adult acute lymphoblastic leukemia. Leukemia10, 434–438 (1996). CASPubMed Google Scholar
Hogarth, L. A. & Hall, A. G. Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood93, 2671–2678 (1999). CASPubMed Google Scholar
Tauchi, T. et al. BCL-2 antisense oligonucleotide genasense is active against imatinib-resistant BCR–ABL-positive cells. Clin. Cancer Res.9, 4267–4273 (2003). CASPubMed Google Scholar
Marcucci, G. et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood101, 425–432 (2003). ArticleCASPubMed Google Scholar
Gorre, M. E., Ellwood-Yen, K., Chiosis, G., Rosen, N. & Sawyers, C. L. BCR–ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR–ABL chaperone heat shock protein 90. Blood100, 3041–3044 (2002). ArticleCASPubMed Google Scholar
Crespo, M. et al. ZAP-70 expression in normal pro/pre B cells, mature B cells and in B-cell acute lymphoblastic leukemia. Clin. Cancer Res.12, 726–734 (2006). ArticleCASPubMed Google Scholar
Rahmani, M. et al. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr–Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr–Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol. Pharmacol.67, 1166–1176 (2005). ArticleCASPubMed Google Scholar
Pelicano, H. et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia20, 610–619 (2006). ArticleCASPubMed Google Scholar
George, P. et al. Combination of the histone deacetylase inhibitor LBH589 and the HSP90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood105, 1768–1776 (2005). ArticleCASPubMed Google Scholar
George, P. et al. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res.64, 3645–3652 (2004). ArticleCASPubMed Google Scholar
Hawkins, L. M., Jayanthan, A. A. & Narendran, A. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr–Abl status and imatinib mesylate sensitivity. Pediatr. Res.57, 430–437 (2005). ArticleCASPubMed Google Scholar
Mesa, R. A. et al. Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood106, 318–327 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature432, 316–323 (2004). A comprehensive review of the genes and pathways involved in DNA-damage responses. Insights into the mechanisms involved in these response pathways might teach us new ways to more effectively treat leukaemia. ArticleCASPubMed Google Scholar
Karagiannis, T. C. & El-Osta, A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther.12, 787–795 (2005). ArticleCASPubMed Google Scholar
Thomas, M., Gessner, A., Vornlocher, H. P., Hadwiger, P., Greil, J. & Heidenreich, O. Targeting MLL–AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood106, 3559–3566 (2005). In vitroand severe combined immune deficiency mice studies indicating that targeted inhibition ofMLL–AF4fusion gene expression with short interfering RNAs might be an effective and highly specific treatment of this therapy-resistant leukaemia. Google Scholar
Lang, P. et al. Chimeric CD19 antibody mediates cytotoxic activity against leukemic blasts with effector cells from pediatric patients who received T-cell-depleted allografts. Blood, 103, 3982–3985 (2004). ArticleCASPubMed Google Scholar
Blair, A., Goulden, N. J., Libri, N. A., Oakhill, A. & Pamphilon, D. H. Immunotherapeutic strategies in acute lymphoblastic leukaemia relapsing after stem cell transplantation. Blood Rev.19, 289–300 (2005). ArticleCASPubMed Google Scholar
Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood106, 376–383 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sparreboom, A., Baker, S. D. & Verweij, J. Paclitaxel repackaged in an albumin-stabilized nanoparticle: handy or just a dandy? J. Clin. Oncol.23, 7765–7767 (2005). ArticleCASPubMed Google Scholar
Cheok, M. H. & Evans, W. E. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nature Rev. Cancer6, 117–129 (2006). A comprehensive review of the role pharmacogenomics has in improving the therapeutic index of antileukaemic agents by facilitating appropriate dose individualization. ArticleCAS Google Scholar
Cheng, Q., Yang, W., Raimondi, S. C., Pui, C. H., Relling, M. V. & Evans, W. E. Karyotypic abnormalities create discordance of germline genotype and cancer cell phenotypes. Nature Genet.37, 878–882 (2005). ArticleCASPubMed Google Scholar