Drug development of MET inhibitors: targeting oncogene addiction and expedience (original) (raw)
Trusolino, L. & Comoglio, P. M. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Rev. Cancer2, 289–300 (2002). ArticleCAS Google Scholar
Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell. Biol.4, 915–925 (2003). ArticleCAS Google Scholar
Xiao, G. H. et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA98, 247–252 (2001). ArticleCASPubMed Google Scholar
Zeng, Q. et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NF-κB. J. Biol. Chem.277, 25203–25208 (2002). ArticleCASPubMed Google Scholar
Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature376, 768–771 (1995). ArticleCASPubMed Google Scholar
Streit, A. et al. A role for HGF/SF in neural induction and its expression in Hensen's node during gastrulation. Development121, 813–824 (1995). ArticleCASPubMed Google Scholar
Andermacher, E., Surani, M. A. & Gherardi, E. Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev. Genet.18, 254–266 (1996). Article Google Scholar
Takayama, H., La Rochelle, W. J., Anver, M., Bockman, D. E. & Merlino, G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc. Natl Acad. Sci. USA93, 5866–5871 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol.119, 629–641 (1992). ArticleCASPubMed Google Scholar
Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature373, 699–702 (1995). ArticleCASPubMed Google Scholar
Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y. & Matsuda, H. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest.106, 1511–1519 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int.59, 2023–2038 (2001). ArticleCASPubMed Google Scholar
Rabkin, R. et al. Hepatocyte growth factor receptor in acute tubular necrosis. J. Am. Soc. Nephrol.12, 531–540 (2001). ArticleCASPubMed Google Scholar
Okada, H. & Kalluri, R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr. Mol. Med.5, 467–474 (2005). ArticleCASPubMed Google Scholar
Liu, Y. & Yang, J. Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney Int.70, 238–240 (2006). ArticleCASPubMed Google Scholar
Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nature Med.5, 226–230 (1999). ArticleCASPubMed Google Scholar
Watanabe, M. et al. Hepatocyte growth factor gene transfer to alveolar septa for effective suppression of lung fibrosis. Mol. Ther.12, 58–67 (2005). ArticleCASPubMed Google Scholar
Boccaccio, C. & Comoglio, P. M. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Rev. Cancer6, 637–645 (2006). ArticleCAS Google Scholar
Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest.109, 863–867 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature311, 29–33 (1984). ArticleCASPubMed Google Scholar
Liang, T. J., Reid, A. E., Xavier, R., Cardiff, R. D. & Wang, T. C. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest.97, 2872–2877 (1996). ArticleCASPubMedPubMed Central Google Scholar
Boccaccio, C. et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature434, 396–400 (2005). Firstin vivodemonstration that lentiviral-mediated somatic transduction of oncogenic MET in hepatocytes of adult mice leads to the development of hepatocellular carcinomas. ArticleCASPubMed Google Scholar
Soman, N. R., Correa, P., Ruiz, B. A. & Wogan, G. N. The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc. Natl Acad. Sci. USA88, 4892–4896 (1991). ArticleCASPubMedPubMed Central Google Scholar
Houldsworth, J., Cordon-Cardo, C., Ladanyi, M., Kelsen, D. P. & Chaganti, R. S. Gene amplification in gastric and esophageal adenocarcinomas. Cancer Res.50, 6417–6422 (1990). CASPubMed Google Scholar
Kuniyasu, H. et al. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem. Biophys. Res. Commun.189, 227–232 (1992). ArticleCASPubMed Google Scholar
Hara, T. et al. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab. Invest.78, 1143–1153 (1998). CASPubMed Google Scholar
Miller, C. T. et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene25, 409–418 (2006). ArticleCASPubMed Google Scholar
Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA104, 20932–20937 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tong, C. Y. et al. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J. Neurosurg.100, 187–193 (2004). CASPubMed Google Scholar
Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, J. M. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol.153, 1023–1034 (2001). Firstin vivodemonstration that transgenic overexpression of wild-type MET in mouse hepatocytes leads to the development of hepatocellular carcinomas. ArticleCASPubMedPubMed Central Google Scholar
Di Renzo, M. F. et al. Overexpression and amplification of the MET/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res.1, 147–154 (1995). CASPubMed Google Scholar
Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet.16, 68–73 (1997). First identification of naturally-occurring oncogenic mutations of MET in humans. ArticleCASPubMed Google Scholar
Park, W. S. et al. Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res.59, 307–310 (1999). CASPubMed Google Scholar
Lee, J. H. et al. A novel germ line juxtamembrane MET mutation in human gastric cancer. Oncogene19, 4947–4953 (2000). ArticleCASPubMed Google Scholar
Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene19, 1547–1555 (2000). First report of a direct involvement of MET in tumour metastasis in humans. Neoplastic cells harbouring activating mutations of theMETgene undergo clonal expansion during the metastatic spreading of head and neck squamous-cell carcinomas. ArticleCASPubMed Google Scholar
Graveel, C. et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc. Natl Acad. Sci. USA101, 17198–17203 (2004). ArticleCASPubMedPubMed Central Google Scholar
Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest.109, 863–867 (2002). ArticleCASPubMedPubMed Central Google Scholar
Boccaccio, C., Gaudino, G., Gambarotta, G., Galimi, F. & Comoglio, P. M. Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J. Biol. Chem.269, 12846–12851 (1994). ArticleCASPubMed Google Scholar
Aguirre Ghiso, J. A., Alonso, D. F., Farias, E. F., Gomez, D. E. & de Kier Joffe, E. B. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur. J. Biochem.263, 295–304 (1999). ArticleCASPubMed Google Scholar
Parr, C., Watkins, G., Mansel, R. E. & Jiang, W. G. The hepatocyte growth factor regulatory factors in human breast cancer. Clin. Cancer Res.10, 202–211 (2004). ArticleCASPubMed Google Scholar
Michieli, P. et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene18, 5221–5231 (1999). ArticleCASPubMed Google Scholar
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res.57, 5391–5398 (1997). CASPubMed Google Scholar
Tuck, A. B., Park, M., Sterns, E. E., Boag, A. & Elliott, B. E. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am. J. Pathol.148, 225–232 (1996). CASPubMedPubMed Central Google Scholar
Ferracini, R. et al. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene12, 1697–1705 (1996). CASPubMed Google Scholar
Ferracini, R. et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene10, 739–749 (1995). CASPubMed Google Scholar
Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA91, 4731–4735 (1994). ArticleCASPubMedPubMed Central Google Scholar
Bellusci, S. et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene9, 1091–1099 (1994). CASPubMed Google Scholar
Jeffers, M., Rong, S., Anver, M. & Vande Woude, G. F. Autocrine hepatocyte growth factor/scatter factor signalling induces transformation and the invasive/metastatic phenotype in C127 cells. Oncogene13, 853–861 (1996). CASPubMed Google Scholar
Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA94, 701–706 (1997). ArticleCASPubMedPubMed Central Google Scholar
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res.58, 5157–5167 (1998). CASPubMed Google Scholar
Sharp, R. et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nature Med.8, 1276–1280 (2002). ArticleCASPubMed Google Scholar
Kobayashi, T. et al. Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem.269, 9817–9821 (1994). ArticleCASPubMed Google Scholar
Lyon, M., Deakin, J. A., Mizuno, K., Nakamura, T. & Gallagher, J. T. Interaction of hepatocyte growth factor with heparan-sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem.269, 11216–11223 (1994). ArticleCASPubMed Google Scholar
Naldini, L. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J.11, 4825–4833 (1992). ArticleCASPubMedPubMed Central Google Scholar
Mars, W. M., Zarnegar, R. & Michalopoulos, G. K. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am. J. Pathol.143, 949–958 (1993). CASPubMedPubMed Central Google Scholar
Lokker, N. A. et al. Structure–function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J.11, 2503–2510 (1992). ArticleCASPubMedPubMed Central Google Scholar
Lietha, D., Chirgadze, D. Y., Mulloy, B., Blundell, T. L. & Gherardi, E. Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J.20, 5543–5555 (2001). ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, K., Kataoka, H., Date, K. & Nakamura, T. Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J. Biol. Chem.273, 22913–22920 (1998). ArticleCASPubMed Google Scholar
Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D. & Wiesmann, C. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J.23, 2325–2335 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kirchhofer, D. et al. Structural and functional basis of the serine protease-like HGF beta-chain in Met binding and signaling. J. Biol. Chem.279, 39915–39924 (2004). ArticleCASPubMed Google Scholar
Trusolino L, Pugliese L, Comoglio PM . Interactions between scatter factors and their receptors: hints for therapeutic applications. FASEB J.12, 1267–1280 (1998). ArticleCASPubMed Google Scholar
Chan, A. M. et al. Identification of a competitive HGF antagonist encoded by an alternative transcript. Science254, 1382–1385 (1991). ArticleCASPubMed Google Scholar
Montesano, R. et al. Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ.9, 355–365 (1998). CASPubMed Google Scholar
Matsumoto, K. & Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics, Cancer Sci.94, 321–327 (2003). ArticleCASPubMed Google Scholar
Matsumoto, K. & Nakamura, T. NK4 gene therapy targeting HGF-Met and angiogenesis. Front. Biosci.13, 1943–1951 (2008). ArticleCASPubMed Google Scholar
Kuba, K. et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res.60, 6737–6743 (2000). CASPubMed Google Scholar
Mazzone, M. et al. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J. Clin. Invest.114, 1418–1432 (2004). ArticleCASPubMedPubMed Central Google Scholar
Michieli, P. et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell6, 61–73 (2004). ArticleCASPubMed Google Scholar
Kong-Beltran, M., Stamos, J. & Wickramasinghe, D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell6, 75–84 (2004). ArticleCASPubMed Google Scholar
Burgess, T. et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res.66, 1721–1729 (2006). ArticleCASPubMed Google Scholar
Kim, K. J. et al. Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin. Cancer Res.12, 1292–1298 (2006). ArticleCASPubMed Google Scholar
Jun, H. T. et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin. Cancer Res.13, 6735–6742 (2007). ArticleCASPubMed Google Scholar
Registry of federally and privately supported clinical trials conducted in the United States[online]
Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res.12, 6144–6152 (2006). ArticleCASPubMed Google Scholar
Petrelli, A. et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl Acad. Sci. USA103, 5090–5095 (2006). ArticleCASPubMedPubMed Central Google Scholar
Morotti, A., Mila, S., Accornero, P., Tagliabue, E. & Ponzetto, C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene21, 4885–4893 (2002). ArticleCASPubMed Google Scholar
Sattler, M. et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res.63, 5462–5469 (2003). CASPubMed Google Scholar
Christensen, J. G. et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res.63, 7345–7355 (2003). CASPubMed Google Scholar
Berthou, S. et al. The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene23, 5387–5393 (2004). ArticleCASPubMed Google Scholar
Smolen, G. A et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl Acad. Sci. USA103, 2316–2321 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res.67, 4408–4417 (2007). ArticleCASPubMed Google Scholar
Eder, J. P. et al. Phase I experience with c-MET inhibitor XL880 administered orally to patients (pts) with solid tumors. J. Clin. Oncol.25, 3526 (2007). Article Google Scholar
Ross, R. W. et al. A phase 2 study of the dual MET/VEGFR2 inhibitor XL880 in patients with papillary renal carcinoma. Abstract B249. AACR-NCI-EORTC: Molecular Targets and Cancer Therapeutics, San Francisco, California, USA (2007). Google Scholar
Jeay, S. et al. ARQ197, a highly selective small molecule inhibitor of c-Met, with selective antitumor properties in a broad spectrum of human cancer cells. Abstract 2369. AACR Annual Meeting, Los Angeles, California, USA (2007). Google Scholar
Munshi, N. et al. ARQ197, a highly selective inhibitor of c-Met, inhibits invasive and metastatic growth of cancer cells. Abstract 2367. AACR Annual Meeting, Los Angeles, California, USA (2007). Google Scholar
Youzhi, L. I. et al. Anti-metastatic activity of ARQ197, a highly selective oral small molecule inhibitor of c-Met, in experimental metastatic models of colon cancer. Abstract 2191. AACR Annual Meeting, Los Angeles, California, USA (2007). Google Scholar
Youzhi, L. I. et al. Broad spectrum anti-cancer activity of ARQ197, a highly selective oral c-Met inhibitor, in multiple xenograft models. Abstract 2216. AACR Annual Meeting, Los Angeles, California, USA (2007). Google Scholar
Garcia, A. et al. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. Abstract 3525. ASCO Annual Meeting, Chicago, Illinois, USA (2007). Google Scholar
Conquering cancer with novel therapeutics. ArQule website[online]
SuperGen reports dosing of first patient in Phase I trial of novel tyrosine kinase inhibitor. SuperGen website[online]
Froning, K. J. et al. SGX523: a potent and highly selective small molecule inhibitor of the MET receptor tyrosine kinase. Abstract 2366. AACR Annual Meeting, Los Angeles, California, USA (2007). Google Scholar
Perera, T. Selective inhibition of Met kinase: JNJ38877605. Spring CTEP Early Drug Development Meeting, Rockville, Maryland, USA (2007). Google Scholar
Bertotti, A. & Comoglio, P. M. Tyrosine kinase signal specificity: lessons from the HGF receptor. Trends Biochem. Sci.28, 527–533 (2003). ArticleCASPubMed Google Scholar
Matzke, A., Herrlich, P., Ponta, H. & Orian-Rousseau, V. A five-amino-acid peptide blocks Met- and Ron-dependent cell migration. Cancer Res.65, 6105–6110 (2005). ArticleCASPubMed Google Scholar
Atabey, N. et al. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J. Biol. Chem.276, 14308–14314 (2001). ArticleCASPubMed Google Scholar
Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature391, 285–288 (1998). ArticleCASPubMed Google Scholar
Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nature Rev. Cancer7, 169–181 (2007). ArticleCAS Google Scholar
Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev.21, 3214–3231 (2007). ArticleCASPubMed Google Scholar
Lutterbach, B. et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res.67, 2081–2088 (2007). ArticleCASPubMed Google Scholar
Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M. & Winford-Thomas, D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene14, 2417–2423 (1997). ArticleCASPubMed Google Scholar
Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell.3, 347–361 (2003). ArticlePubMed Google Scholar
Kmiecik, T. E., Keller, J. R., Rosen, E. & Vande Woude, G. F. Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood80, 2454–2457 (1992). ArticleCASPubMed Google Scholar
Steeg, P. S. Angiogenesis inhibitors: motivators of metastasis? Nature Med.9, 822–823 (2003). ArticleCASPubMed Google Scholar
Bottaro, D. P. & Liotta, L. A. Cancer: Out of air is not out of action. Nature423, 593–595 (2003). ArticleCASPubMed Google Scholar
Amit, I., Wides, R. & Yarden, Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol. Syst. Biol.3, 151 (2007). ArticlePubMedPubMed Central Google Scholar
Abounader, R. et al. Regulation of c-Met-dependent gene expression by PTEN. Oncogene23, 9173–9182 (2004). ArticleCASPubMed Google Scholar
Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science318, 287–290 (2007). ArticleCASPubMed Google Scholar
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science316, 1039–1043 (2007). First description ofMETgene amplification as a mechanism of acquired resistance to epidermal growth factor receptor inhibitors. ArticleCASPubMed Google Scholar
Kaposi-Novak, P. et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest.116, 1582–1595 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131, 1190–1203 (2007). ArticleCASPubMed Google Scholar
Harrington, E. A., Fanidi, A. & Evan G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev.4, 120–129 (1994). ArticleCASPubMed Google Scholar
Tikhomirov, O. & Carpenter, G. Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. J. Biol. Chem.279, 12988–12996 (2004). ArticleCASPubMed Google Scholar
Shima, N. et al. Tumor cytotoxic factor/hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein. Biochem. Biophys. Res. Commun.180, 1151–1158 (1991). ArticleCASPubMed Google Scholar
Matteucci, E., Castoldi, R. & Desiderio, M. A. Hepatocyte growth factor induces pro-apoptotic genes in HepG2 hepatoma but not in B16-F1 melanoma cells. J. Cell. Physiol.186, 387–396 (2001). ArticleCASPubMed Google Scholar
Rasola, A. et al. Hepatocyte growth factor sensitizes human ovarian carcinoma cell lines to paclitaxel and cisplatin. Cancer Res.64, 1744–1750 (2004). ArticleCASPubMed Google Scholar
Coltella, N. et al. p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. Int. J. Cancer118, 2981–2990 (2006). ArticleCASPubMed Google Scholar
Michieli, P. et al. An HGF-MSP chimera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nature Biotechnol.20, 488–495 (2002). ArticleCAS Google Scholar
Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev.16, 3074–3086 (2002). ArticleCASPubMedPubMed Central Google Scholar
Orian-Rousseau, V. et al. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol. Biol. Cell18, 76–83 (2007). ArticleCASPubMedPubMed Central Google Scholar
Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell107, 643–654 (2001). ArticleCASPubMed Google Scholar
Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res.65, 10674–10679 (2005). ArticleCASPubMed Google Scholar
Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. J Cell Biol.175, 993–1003 (2006). ArticleCASPubMedPubMed Central Google Scholar
Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol.4, 720–724 (2002). ArticleCASPubMed Google Scholar
Conrotto, P., Corso, S., Gamberini, S., Comoglio, P. M. & Giordano, S. Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene23, 5131–5137 (2004). ArticleCASPubMed Google Scholar
Conrotto, P. et al. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood105, 4321–4329 (2005). References 123–130 provide information on how MET-dependent signals can be amplified and/or diversified by MET association with surface transmembrane partners, including CD44, β4 integrin and plexin B. ArticleCASPubMed Google Scholar
Di Renzo, M. F., et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene7, 2549–2553 (1992). CASPubMed Google Scholar
Ruco, L., et al. D. Expression of Met protein in thyroid tumours. J. Pathol.180, 266–270 (1996). ArticleCASPubMed Google Scholar
Chen, B. K., et al. Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic state. Pathol. Res. Pract.195, 427–433 (1999). ArticleCASPubMed Google Scholar
Di Renzo, M. F., et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int. J. Cancer58, 658–662 (1994). ArticleCASPubMed Google Scholar
Di Renzo, M. F., Poulsom, R., Olivero, M., Comoglio, P. M. & Lemoine, N. R. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res.55, 1129–1138 (1995). CASPubMed Google Scholar
Humphrey, P. A., et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol.147, 386–396 (1995). CASPubMedPubMed Central Google Scholar
Natali, P. G., et al. Overexpression of the met/HGF receptor in renal cell carcinomas. Int. J. Cancer69, 212–217 (1996). ArticleCASPubMed Google Scholar
Ueki, T., Fujimoto, J., Suzuki, T., Yamamoto, H & Okamoto, E. Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology25, 619–623 (1997). ArticleCASPubMed Google Scholar
Tavian, D., et al. U-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int. J. Cancer87, 644–649 (2000). ArticleCASPubMed Google Scholar
Camp, R. L., Rimm, E. B. & Rimm, D. L. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer86, 2259–2265 (1999). ArticleCASPubMed Google Scholar
Wielenga, V. J., et al. Expression of c-Met and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am. J. Pathol.157, 1563–1573 (2000). ArticleCASPubMedPubMed Central Google Scholar
Morello, S., et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J. Cell. Physiol.189, 285–290 (2001). ArticleCASPubMed Google Scholar
Big biotechs take antibody approach to blocking Met receptor. Chemical & Engineering news[online]