Albreht, T., McKee, M., Alexe, D. M., Coleman, M. P. & Martin-Moreno, J. M. Making progress against cancer in Europe in 2008. Eur. J. Cancer44, 1451–1456 (2008). ArticlePubMed Google Scholar
Chowdhury, I., Tharakan, B. & Bhat, G. K. Current concepts in apoptosis: the physiological suicide program revisited. Cell. Mol. Biol. Lett.11, 506–525 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gulbins, E., Jekle, A., Ferlinz, K., Grassme, H. & Lang, F. Physiology of apoptosis. Am. J. Physiol. Renal. Physiol.279, F605–F615 (2000). ArticleCASPubMed Google Scholar
Casella, C. R. & Finkel, T. H. Mechanisms of lymphocyte killing by HIV. Curr. Opin. Hematol.4, 24–31 (1997). ArticleCASPubMed Google Scholar
Rohn, T. T., Head, E., Nesse, W. H., Cotman, C. W. & Cribbs, D. H. Activation of caspase-8 in the Alzheimer's disease brain. Neurobiol. Dis.8, 1006–1016 (2001). ArticleCASPubMed Google Scholar
Sanchez Mejia, R. O. & Friedlander, R. M. Caspases in Huntington's disease. Neuroscientist7, 480–489 (2001). ArticleCASPubMed Google Scholar
Hayakawa, K. et al. Sensitivity to apoptosis signal, clearance rate, and ultrastructure of fas ligand-induced apoptosis in in vivo adult cardiac cells. Circulation105, 3039–3045 (2002). ArticleCASPubMed Google Scholar
Singh, A. B., Kaushal, V., Megyesi, J. K., Shah, S. V. & Kaushal, G. P. Cloning and expression of rat caspase-6 and its localization in renal ischemia/reperfusion injury. Kidney Int.62, 106–115 (2002). ArticleCASPubMed Google Scholar
Prasad, K. V. & Prabhakar, B. S. Apoptosis and autoimmune disorders. Autoimmunity36, 323–330 (2003). ArticleCASPubMed Google Scholar
Gerl, R. & Vaux, D. L. Apoptosis in the development and treatment of cancer. Carcinogenesis26, 263–270 (2005). ArticleCASPubMed Google Scholar
Fan, T. J., Han, L. H., Cong, R. S. & Liang, J. Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai) 37, 719–727 (2005). ArticleCASPubMed Google Scholar
Lavrik, I. N., Golks, A. & Krammer, P. H. Caspases: pharmacological manipulation of cell death. J. Clin. Invest.115, 2665–2672 (2005). ArticleCASPubMedPubMed Central Google Scholar
Thornberry, N. A. Caspases: a decade of death research. Cell Death Differ.6, 1023–1027 (1999). ArticleCASPubMed Google Scholar
Boatright, K. M. et al. A unified model for apical caspase activation. Mol. Cell11, 529–541 (2003). ArticleCASPubMed Google Scholar
van Loo, G. et al. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ.9, 1031–1042 (2002). ArticleCASPubMed Google Scholar
Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science281, 1305–1308 (1998). ArticleCASPubMed Google Scholar
Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ.10, 26–35 (2003). ArticleCASPubMed Google Scholar
Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer2, 420–430 (2002). ArticleCAS Google Scholar
Pitti, R. M. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature396, 699–703 (1998). ArticleCASPubMed Google Scholar
Clancy, L. et al. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc. Natl Acad. Sci. USA102, 18099–18104 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wagner, K. W. et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature Med.13, 1070–1077 (2007). This study identifies specific biomarkers that robustly predict sensitivity to rhApo2L/TRAIL across numerous and diverse cancer cell lines. ArticleCASPubMed Google Scholar
Feig, C., Tchikov, V., Schutze, S. & Peter, M. E. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J.26, 221–231 (2007). ArticleCASPubMed Google Scholar
Muppidi, J. R. & Siegel, R. M. Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nature Immunol.5, 182–189 (2004). ArticleCAS Google Scholar
Austin, C. D. et al. Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl Acad. Sci. USA103, 10283–10288 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kohlhaas, S. L., Craxton, A., Sun, X. M., Pinkoski, M. J. & Cohen, G. M. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. J. Biol. Chem.282, 12831–12841 (2007). ArticleCASPubMed Google Scholar
Karin, M. & Lin, A. NF-kB at the crossroads of life and death. Nature Immunol.3, 221–227 (2002). ArticleCAS Google Scholar
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190 (2003). ArticleCASPubMed Google Scholar
Varfolomeev, E. E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell116, 491–497 (2004). ArticleCASPubMed Google Scholar
Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Rev. Cancer8, 121–132 (2008). ArticleCAS Google Scholar
Nieminen, A. I., Partanen, J. I., Hau, A. & Klefstrom, J. c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis. EMBO J.26, 1055–1067 (2007). ArticleCASPubMedPubMed Central Google Scholar
Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nature Rev. Cancer2, 277–288 (2002). ArticleCAS Google Scholar
Hollstein, M., et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res.22, 3551–3555 (1994). CASPubMedPubMed Central Google Scholar
Ghobrial, I. M., Witzig, T. E. & Adjei, A. A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55, 178–194 (2005). ArticlePubMed Google Scholar
Kaufmann, S. H. & Vaux, D. L. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene22, 7414–7430 (2003). ArticleCASPubMed Google Scholar
Bin, L. et al. Tumor-derived mutations in the TRAIL receptor DR5 inhibit TRAIL signaling through the DR4 receptor by competing for ligand binding. J. Biol. Chem.282, 28189–28194 (2007). ArticleCASPubMed Google Scholar
Harada, K. et al. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res.62, 5897–5901 (2002). CASPubMed Google Scholar
Russo, A., Terrasi, M., Agnese, V., Santini, D. & Bazan, V. Apoptosis: a relevant tool for anticancer therapy. Ann. Oncol.17 (Suppl. 7), 115–123 (2006). Article Google Scholar
Viardot, A., Barth, T. F., Moller, P., Dohner, H. & Bentz, M. Cytogenetic evolution of follicular lymphoma. Semin. Cancer Biol.13, 183–190 (2003). ArticlePubMed Google Scholar
Kim, M. S., Jeong, E. G., Yoo, N. J. & Lee, S. H. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br. J. Cancer98, 1533–1535 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science275, 967–969 (1997). ArticleCASPubMed Google Scholar
Wang, Y., Quon, K. C., Knee, D. A., Nesterov, A. & Kraft, A. S. RAS, MYC, and sensitivity to tumor necrosis factor-a-related apoptosis-inducing ligand-induced apoptosis. Cancer Res.65, 1615–1616 (2005). This paper provides direct evidence that oncogenes can sensitize cells to apoptosis stimulation by a PARA. ArticleCASPubMed Google Scholar
Lee, J. M. & Bernstein, A. Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev.14, 149–161 (1995). ArticleCASPubMed Google Scholar
Cuello, M. et al. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res.61, 4892–4900 (2001). CASPubMed Google Scholar
Kim, S. H., Ricci, M. S. & El Deiry, W. S. Mcl-1: a gateway to TRAIL sensitization. Cancer Res.68, 2062–2064 (2008). ArticleCASPubMed Google Scholar
Panner, A., Parsa, A. T. & Pieper, R. O. Use of APO2L/TRAIL with mTOR inhibitors in the treatment of glioblastoma multiforme. Expert Rev. Anticancer Ther.6, 1313–1322 (2006). ArticleCASPubMed Google Scholar
Poh, T. W., Huang, S., Hirpara, J. L. & Pervaiz, S. LY303511 amplifies TRAIL-induced apoptosis in tumor cells by enhancing DR5 oligomerization, DISC assembly, and mitochondrial permeabilization. Cell Death Differ.14, 1813–1825 (2007). ArticleCASPubMed Google Scholar
Guo, F. et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood99, 3419–3426 (2002). ArticleCASPubMed Google Scholar
Ou, D. et al. Synergistic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human pancreatic beta cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum. Immunol.66, 274–284 (2005). ArticleCASPubMed Google Scholar
Ray, S., Bucur, O. & Almasan, A. Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis10, 1411–1418 (2005). ArticleCASPubMed Google Scholar
Hersh, E. M. et al. Phase II studies of recombinant human tumor necrosis factor-a in patients with malignant disease: a summary of the Southwest Oncology Group experience. J. Immunother.10, 426–431 (1991). ArticleCASPubMed Google Scholar
Grunhagen, D. J., De Wilt, J. H., Graveland, W. J., van Geel, A. N. & Eggermont, A. M. The palliative value of tumor necrosis factor-a-based isolated limb perfusion in patients with metastatic sarcoma and melanoma. Cancer106, 156–162 (2006). ArticlePubMed Google Scholar
Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature364, 806–809 (1993). ArticleCASPubMed Google Scholar
Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med.5, 157–163 (1999). ArticleCASPubMed Google Scholar
Bouralexis, S., Findlay, D. M. & Evdokiou, A. Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis10, 35–51 (2005). ArticleCASPubMed Google Scholar
Kelley, S. K. & Ashkenazi, A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol.4, 333–339 (2004). ArticleCASPubMed Google Scholar
Rowinsky, E. K. Curtailing the high rate of late-stage attrition of investigational therapeutics against unprecedented targets in patients with lung and other malignancies. Clin. Cancer Res.10, 4220s–4226s (2004). ArticleCASPubMed Google Scholar
Pitti, R. M. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem.271, 12687–12690 (1996). ArticleCASPubMed Google Scholar
Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity3, 673–682 (1995). ArticleCASPubMed Google Scholar
Sedger, L. M. et al. IFNg mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol.163, 920–926 (1999). CASPubMed Google Scholar
Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med.7, 94–100 (2001). ArticleCASPubMed Google Scholar
Wang, S. & El Deiry, W. S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene22, 8628–8633 (2003). ArticleCASPubMed Google Scholar
Hamilton, S. E., Wolkers, M. C., Schoenberger, S. P. & Jameson, S. C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nature Immunol.7, 475–481 (2006). ArticleCAS Google Scholar
Huntington, N. D. et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunol.8, 856–863 (2007). ArticleCAS Google Scholar
Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature434, 88–93 (2005). ArticleCASPubMed Google Scholar
Finnberg, N., Klein-Szanto, A. J. & El Deiry, W. S. TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J. Clin. Invest.118, 111–123 (2008). ArticleCASPubMed Google Scholar
Grosse-Wilde, A. et al. TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J. Clin. Invest.118, 100–110 (2008). ArticleCASPubMed Google Scholar
Laguinge, L. M. et al. DR5 receptor mediates anoikis in human colorectal carcinoma cell lines. Cancer Res.68, 909–917 (2008). ArticleCASPubMed Google Scholar
Diehl, G. E. et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity21, 877–889 (2004). ArticleCASPubMed Google Scholar
Wang, S. & El Deiry, W. S. Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Res.64, 6666–6672 (2004). ArticleCASPubMed Google Scholar
Almasan, A. & Ashkenazi, A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev.14, 337–348 (2003). ArticleCASPubMed Google Scholar
Smyth, M. J. et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon g-dependent natural killer cell protection from tumor metastasis. J. Exp. Med.193, 661–670 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet.17, 141–143 (1997). ArticleCASPubMed Google Scholar
Ashkenazi, A., Holland, P. & Eckhardt, S. G. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J. Clin. Oncol.26, 3621–3630 (2008). ArticleCASPubMed Google Scholar
Georgakis, G. V. et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br. J. Haematol.130, 501–510 (2005). ArticleCASPubMed Google Scholar
Guo, Y. et al. A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J. Biol. Chem.280, 41940–41952 (2005). ArticleCASPubMed Google Scholar
Ichikawa, K. et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Med.7, 954–960 (2001). ArticleCASPubMed Google Scholar
Motoki, K. et al. Enhanced apoptosis and tumor regression induced by a direct agonist antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2. Clin. Cancer. Res.11, 3126–3135 (2005). Refs. 87–90 demonstratein vivoanti-tumour activity of agonist antibodies to DR4 or DR5 in xenograft models. ArticleCASPubMed Google Scholar
Plummer, R. et al. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin. Cancer. Res.13, 6187–6194 (2007). ArticleCASPubMed Google Scholar
Pukac, L. et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br. J. Cancer92, 1430–1441 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tolcher, A. W. et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J. Clin. Oncol.25, 1390–1395 (2007). ArticleCASPubMed Google Scholar
Zhang, L., Zhang, X., Barrisford, G. W. & Olumi, A. F. Lexatumumab (TRAIL-receptor 2 mAb) induces expression of DR5 and promotes apoptosis in primary and metastatic renal cell carcinoma in a mouse orthotopic model. Cancer Lett.251, 146–157 (2007). ArticleCASPubMed Google Scholar
Krammer, P. H., Behrmann, I., Daniel, P., Dhein, J. & Debatin, K. M. Regulation of apoptosis in the immune system. Curr. Opin. Immunol.6, 279–289 (1994). ArticleCASPubMed Google Scholar
Bodmer, J. L., Meier, P., Tschopp, J. & Schneider, P. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J. Biol. Chem.275, 20632–20637 (2000). ArticleCASPubMed Google Scholar
Keane, M. M., Ettenberg, S. A., Nau, M. M., Russell, E. K. & Lipkowitz, S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res.59, 734–741 (1999). CASPubMed Google Scholar
Ashkenazi, A., Herbst, R. S. To kill a tumor cell: the potential of proapoptotic receptor agonists. J. Clin. Invest.118, 1979–1990 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hymowitz, S. G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell4, 563–571 (1999). ArticleCASPubMed Google Scholar
Lawrence, D. et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med.7, 383–385 (2001). ArticleCASPubMed Google Scholar
LoRusso, P. et al. First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. J. Clin. Oncol. Abstr.25, 3534 (2007). Article Google Scholar
Jo, M. et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nature Med.6, 564–567 (2000). ArticleCASPubMed Google Scholar
Ganten, T. M. et al. Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin. Cancer. Res.12, 2640–2646 (2006). ArticleCASPubMed Google Scholar
Hao, C., et al. TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res.64, 8502–8506 (2004). ArticleCASPubMed Google Scholar
Adams, C. et al. Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death Differ.15, 751–761 (2008). This paper reports the X-ray crystal structure of an agonist antibody in complex with a pro-apoptotic receptor, providing insights into the potential mechanisms of apoptosis activation. ArticleCASPubMed Google Scholar
Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science277, 818–821 (1997). ArticleCASPubMed Google Scholar
Marini, P. Drug evaluation: lexatumumab, an intravenous human agonistic mAb targeting TRAIL receptor 2. Curr. Opin. Mol. Ther.8, 539–546 (2006). CASPubMed Google Scholar
Hymowitz, S. G. et al. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry39, 633–640 (2000). ArticleCASPubMed Google Scholar
Yu, R., Mandlekar, S., Ruben, S., Ni, J. & Kong, A. N. Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in androgen-independent prostate cancer cells. Cancer Res.60, 2384–2389 (2000). CASPubMed Google Scholar
Mitsiades, N., Poulaki, V., Tseleni-Balafouta, S., Koutras, D. A. & Stamenkovic, I. Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res.60, 4122–4129 (2000). CASPubMed Google Scholar
Xia, X. X., Shen, Y. L. & Wei, D. Z. Purification and characterization of recombinant sTRAIL expressed in Escherichia coli. Acta Biochim. Biophys. Sin. (Shanghai) 36, 118–122 (2004). ArticleCASPubMed Google Scholar
Yao, G. H. et al. Induction of apoptosis by recombinant soluble human TRAIL in Jurkat cells. Biomed. Environ. Sci.20, 470–477 (2007). CASPubMed Google Scholar
Mitsiades, C. S. et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood98, 795–804 (2001). ArticleCASPubMed Google Scholar
Daniel, D. et al. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood110, 4037–4046 (2007). This study demonstratedin vivosynergy between rhApo2L/TRAIL and rituximab against non-Hodgkin's lymphoma xenografts and provided insight into the underlying mechanism. ArticleCASPubMed Google Scholar
Kelley, S. K. et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther.299, 31–38 (2001). CASPubMed Google Scholar
Jin, H. et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res.64, 4900–4905 (2004). ArticleCASPubMed Google Scholar
Hylander, B. L. et al. The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J. Transl. Med.3, 22 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pollack, I. F., Erff, M. & Ashkenazi, A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin. Cancer. Res.7, 1362–1369 (2001). CASPubMed Google Scholar
Roth, W. et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem. Biophys. Res. Commun.265, 479–483 (1999). ArticleCASPubMed Google Scholar
Cuello, M., Ettenberg, S. A., Nau, M. M. & Lipkowitz, S. Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol. Oncol.81, 380–390 (2001). ArticleCASPubMed Google Scholar
El Zawahry, A., McKillop, J. & Voelkel-Johnson, C. Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts. BMC Cancer5, 2 (2005). ArticleCASPubMedPubMed Central Google Scholar
Frese, S. Brunner, T., Gugger, M., Uduehi, A. & Schmid, R. A. Enhancement of Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in non-small cell lung cancer cell lines by chemotherapeutic agents without correlation to the expression level of cellular protease caspase-8 inhibitory protein. J. Thorac. Cardiovasc. Surg.123, 168–174 (2002). ArticleCASPubMed Google Scholar
Gliniak, B. & Le, T. Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res.59, 6153–6158 (1999). CASPubMed Google Scholar
Lacour, S. et al. Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res.61, 1645–1651 (2001). CASPubMed Google Scholar
Mizutani, Y., Yoshida, O., Miki, T. & Bonavida, B. Synergistic cytotoxicity and apoptosis by Apo-2 ligand and adriamycin against bladder cancer cells. Clin. Cancer. Res.5, 2605–2612 (1999). CASPubMed Google Scholar
Xiang, H. et al. Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors. Oncogene21, 3611–3619 (2002). ArticleCASPubMed Google Scholar
Nimmanapalli, R. et al. Pretreatment with paclitaxel enhances Apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res.61, 759–763 (2001). CASPubMed Google Scholar
Odoux, C. & Albers, A. Additive effects of TRAIL and paclitaxel on cancer cells: implications for advances in cancer therapy. Vitam. Horm.67, 385–407 (2004). ArticleCASPubMed Google Scholar
Ravi, R. et al. Elimination of hepatic metastases of colon cancer cells via p53-independent cross-talk between irinotecan and Apo2 ligand/TRAIL. Cancer Res.64, 9105–9114 (2004). ArticleCASPubMed Google Scholar
Ray, S. & Almasan, A. Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res.63, 4713–4723 (2003). CASPubMed Google Scholar
Vignati, S., Codegoni, A., Polato, F. & Broggini, M. Trail activity in human ovarian cancer cells: potentiation of the action of cytotoxic drugs. Eur. J. Cancer38, 177–183 (2002). ArticleCASPubMed Google Scholar
Ricci, M. S. et al. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell12, 66–80 (2007). ArticleCASPubMed Google Scholar
Hyer, M. L. et al. Synthetic triterpenoids cooperate with tumor necrosis factor related apoptosis inducing ligand to induce apoptosis of breast cancer cells. Cancer Res.65, 4799–4808 (2005). ArticleCASPubMed Google Scholar
Naka, T. et al. Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients' colon tumors grown in SCID mice. Cancer Res.62, 5800–5806 (2002). CASPubMed Google Scholar
Meng, X. W. et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43–9006)-induced TRAIL sensitization. J. Biol. Chem.82, 29831–29846 (2007). ArticleCAS Google Scholar
Rosato, R. R., Almenara, J. A., Coe, S. & Grant, S. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res.67, 9490–9500 (2007). ArticleCASPubMed Google Scholar
Shankar, S. et al. The sequential treatment with ionizing radiation followed by TRAIL/Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int. J. Oncol.24, 1133–1114 (2004). CASPubMed Google Scholar
Shankar, S., Singh, T. R. and Srivastava, R. K. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate61, 35–49 (2004). ArticleCASPubMed Google Scholar
Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/T. Nature Med.8, 808–815 (2002). ArticleCASPubMed Google Scholar
Brooks, A. D. et al. The proteasome inhibitor bortezomib (Velcade) sensitizes some human tumor cells to Apo2L/TRAIL-mediated apoptosis. Ann. NY Acad. Sci.1059, 160–167 (2005). ArticleCASPubMed Google Scholar
Johnson, T. R. et al. The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overexpressing cells. Oncogene22, 4953–4963 (2003). ArticleCASPubMed Google Scholar
Zhu, H. et al. Proteasome inhibitors-mediated TRAIL resensitization and Bik accumulation. Cancer Biol. Ther.4, 781–786 (2005). ArticleCASPubMed Google Scholar
Nakata, S. et al. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene23, 6261–6271 (2004). ArticleCASPubMed Google Scholar
Kelley, R. F. et al. Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J. Biol. Chem.280, 2205–2212 (2005). ArticleCASPubMed Google Scholar
Eggert, A. et al. Resistance to TRAIL-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Med. Pediatr. Oncol.35, 603–607 (2000). ArticleCASPubMed Google Scholar
LeBlanc, H. N. & Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ.10, 66–75 (2003). ArticleCASPubMed Google Scholar
Fulda, S., Meyer, E. & Debatin, K. M. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene21, 2283–2294 (2002). ArticleCASPubMed Google Scholar
Jonsson, G., Paulie, S. & Grandien, A. High level of cFLIP correlates with resistance to death receptor-induced apoptosis in bladder carcinoma cells. Anticancer Res.23, 1213–1218 (2003). PubMed Google Scholar
Ullenhag, G. J. et al. Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin. Cancer. Res.13, 5070–5075 (2007). ArticleCASPubMed Google Scholar
Zhang, L. & Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther.12, 228–237 (2005). ArticleCASPubMed Google Scholar
Ricci, M. S. et al. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol. Cell Biol.24, 8541–8555 (2004). ArticleCASPubMedPubMed Central Google Scholar
Baritaki, S. et al. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J. Immunol.179, 5441–5453 (2007). ArticleCASPubMed Google Scholar
Rahman, M., et al. TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res. Treat 12 Feb 2008 [Epub ahead of print].
Herbst, R. S. et al. A Phase I safety and pharmacokinetic study in patients with advanced cancer treated with recombinant Apo2L/TRAIL, an apoptosis-inducing protein. J. Clin. Oncol. Abstr.24, 3013 (2006). ArticleCAS Google Scholar
Fanale, M., et al. Results of a phase Ib study of recombinant human Apo2L/TRAIL with rituximab in patients with relapsed, low-grade NHL. Ann. Oncol. Abstr.19 (Suppl 4), iv161 (2008). Google Scholar
Soria, J. et al. Phase Ib study of recombinant human (rh)Apo2L/TRAIL in combination with paclitaxel, carboplatin, and bevacizumab (PCB) in patients (pts) with advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. Abstr.26 (Suppl.), 3539 (2008). Article Google Scholar
Jin, H. et al. Cooperation of the agonistic DR5 antibody Apomab with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Clin. Canc. Res. (in the press)
Hotte, S. J. et al. A Phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin. Cancer. Res.14, 3450–3455 (2008). ArticleCASPubMed Google Scholar
Chow, L. Q. et al. HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase 1 and PK study. J. Clin. Oncol. Abstr.24 (Suppl. 18), 2515 (2006). Google Scholar
Oldenhuis, C., et al. A phase I study with the agonistic TRAIL-R1 antibody, mapatumumab, in combination with gemcitabine and cisplatin. J. Clin. Oncol. Abstr.26 (Suppl.), 3540 (2008). Article Google Scholar
Younes, A., Vose, J. M. & Zelenetz, A. D. Results of a Phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/refractory non-Hodgkin's lymphoma (ETR1-HM01). Blood Abstr.106, 489 (2005). Google Scholar
Kanzler, S., Trarbach, T., Heinemann, V., Koehne, C. H. & Seeber, S. Results of a Phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed or refractory colorectal cancer (CRC). Abstract 630. 13th European Cancer Conference, Paris, France October 30–November 3, 2005. Google Scholar
Bonomi, P. et al. Results of a Phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/recurrent non-small cell lung cancer. Abstract 1851. 11th World Conference on Lung Cancer, Barcelona, Spain July 3–6. 2005. Google Scholar
Patnaik, A. et al. HGS-ETR2 - A fully human monoclonal antibody to TRAIL-R2: Results of a phase I trial in patients with advanced solid tumors. J. Clin. Oncol.24 (Suppl. 18), 3012 (2006). Google Scholar
Sikic, B. I. et al. A Phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J. Clin. Oncol.25 (Suppl. 18), 14006 (2007). Google Scholar
Camidge, D. R. et al. A phase I safety and pharmacokinetic study of apomab, a human DR5 agonist antibody, in patients with advanced cancer. J. Clin. Oncol. Abstr.25 (Suppl Suppl. 18), 3582 (2008). Google Scholar
Sharma, S. et al. Phase I trial of LBY135, a monoclonal antibody agonist to DR5, alone and in combination with capecitabine in advanced solid tumors. J. Clin. Oncol. Abstr.26 (Suppl.), 3538 (2008). Article Google Scholar
Saleh, M. N. et al. A phase I study of CS-1008 (humanized monoclonal antibody targeting death receptor 5 or DR5), administered weekly to patients with advanced solid tumors or lymphomas. J. Clin. Oncol. Abstr.26 (Suppl.), 3537 (2008). Article Google Scholar
Levine, A. J. et al. The 1993 Walter Hubert Lecture: the role of the p53 tumour-suppressor gene in tumorigenesis. Br. J. Cancer69, 409–416 (1994). ArticleCASPubMedPubMed Central Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). ArticleCAS Google Scholar
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997). ArticleCASPubMed Google Scholar
Sharp, D. A., Lawrence, D. A. & Ashkenazi, A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J. Biol. Chem.280, 19401–19409 (2005). ArticleCASPubMed Google Scholar
Thome, M. & Tschopp, J. Regulation of lymphocyte proliferation and death by FLIP. Nature Rev. Immunol.1, 50–58 (2001). ArticleCAS Google Scholar
El Deiry, W. S. Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ.8, 1066–1075 (2001). ArticleCASPubMed Google Scholar
Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell Biol.20, 929–935 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev.14, 2060–2071 (2000). CASPubMedPubMed Central Google Scholar