Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders (original) (raw)
George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov.1, 808–820 (2002). CAS Google Scholar
Spiegel, A. M. Mutations in G proteins and G protein-coupled receptors in endocrine disease. J. Clin. Endocrinol. Metab.81, 2434–2442 (1996). CASPubMed Google Scholar
Rana, B. K., Shiina, T. & Insel, P. A. Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu. Rev. Pharmacol. Toxicol.41, 593–624 (2001). CASPubMed Google Scholar
Howard, A. D. et al. Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol. Sci.22, 132–140 (2001). CASPubMed Google Scholar
Mohler, H. F., Fritschy, J. M. & Rudolph, U. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther.300, 2–8 (2002). CASPubMed Google Scholar
Langmead, C. J. & Christopoulos, A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol. Sci.27, 475–481 (2006). CASPubMed Google Scholar
May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol.47, 1–51 (2007). Comprehensive overview of principles, mechanisms and examples of GPCR allosterism. CASPubMed Google Scholar
Lazareno, S. & Birdsall, N. J. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol.48, 362–378 (1995). CASPubMed Google Scholar
Ehlert, F. J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol.33, 187–194 (1988). CASPubMed Google Scholar
Hall, D. A. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol.58, 1412–1423 (2000). Together with reference 9, important theoretical papers describing the application and extension of the ternary complex model to allosteric interactions. CASPubMed Google Scholar
Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev.54, 323–374 (2002). CASPubMed Google Scholar
Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov.1, 198–210 (2002). CAS Google Scholar
Lazareno, S., Dolezal, V., Popham, A. & Birdsall, N. J. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol.65, 257–266 (2004). CASPubMed Google Scholar
Valant, C. et al. A novel mechanism of G protein-coupled receptor functional selectivity: Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. (2008). Discovery and validation of a bitopic orthosteric/allosteric mode of action of a functionally selective GPCR ligand.
Kenakin, T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nature Rev. Drug Discov.4, 919–927 (2005). CAS Google Scholar
Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther.320, 1–13 (2007). CASPubMed Google Scholar
Mathiesen, J. M. et al. Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol. Pharmacol.68, 393–402 (2005). One of the earliest and most striking examples of allosteric modulator-mediated stimulus trafficking. CASPubMed Google Scholar
Zhang, Y., Rodriguez, A. L. & Conn, P. J. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J. Pharmacol. Exp. Ther.315, 1212–1219 (2005). CASPubMed Google Scholar
Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci.28, 382–389 (2007). CASPubMed Google Scholar
May, L. T. & Christopoulos, A. Allosteric modulators of G-protein-coupled receptors. Curr. Opin. Pharmacol.3, 551–556 (2003). CASPubMed Google Scholar
Harrington, P. E. & Fotsch, C. Calcium sensing receptor activators: calcimimetics. Curr. Med. Chem.14, 3027–3034 (2007). CASPubMed Google Scholar
Dorr, P. et al. Maraviroc (UK-427, 857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother.49, 4721–4732 (2005). CASPubMedPubMed Central Google Scholar
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov.3, 711–715 (2004). CAS Google Scholar
Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37, 205–237 (1997). CASPubMed Google Scholar
Romano, C., Sesma, M. A., Mcdonald, C. T., O'Malley, K., Van den Pol., A. N. & Olney, J. W. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol.355, 455–469 (1995). CASPubMed Google Scholar
Valenti, O., Conn, P. J. & Marino, M. J. Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J. Cell Physiol.191, 125–137 (2002). CASPubMed Google Scholar
Annoura, H., Fukunaga, A., Uesugi, M., Tatsouka, T. & Horikawa, Y. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropchromen-1acarboxylates. Bioorg Med. Chem. Lett.6, 763–766 (1996). CAS Google Scholar
Varney, M. A. et al. SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J. Pharmacol. Exp. Ther.290, 170–181 (1999). Together with reference 27, seminal papers reporting the discovery of early, novel GPCR negative allosteric modulators (NAMS) for metabotropic glutamate receptors. CASPubMed Google Scholar
Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology38, 1493–1503 (1999). CASPubMed Google Scholar
Cosford, N. D. et al. 3-[(2-Methyl-1, 3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J. Med. Chem.46, 204–206 (2003). CASPubMed Google Scholar
Lea, P. M. & Faden, A. I. Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev.12, 149–166 (2006). CASPubMedPubMed Central Google Scholar
Yu, M. Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5. Curr. Top. Med. Chem.7, 1800–1805 (2007). CASPubMed Google Scholar
Swanson, C. J. et al. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nature Rev. Drug Discov.4, 131–144 (2005). CAS Google Scholar
Porter, R. H. et al. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther.315, 711–721 (2005). CASPubMed Google Scholar
Patel, J. B., Martin, C. & Malick, J. B. Differential antagonism of the anticonflict effects of typical and atypical anxiolytics. Eur. J. Pharmacol.86, 295–298 (1982). CASPubMed Google Scholar
Pecknold, J. C., McClure, D. J., Appeltauer, L., Wrzesinski, L. & Allan, T. Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J. Clin. Psychopharmacol.2, 129–133 (1982). CASPubMed Google Scholar
Bear, M. F., Huber, K. M., Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci.27, 370–377 (2004). CASPubMed Google Scholar
Slassi, A. et al. Recent advances in non-competitive mGlu5 receptor antagonists and their potential therapeutic applications. Curr. Top. Med. Chem.5, 897–911 (2005). CASPubMed Google Scholar
Kinney, G. G., Burno, M., Campbell, U. C., Hernandez, L. M., Rodriguez, D., Bristow, L. J. & Conn, P. J. Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther.306, 116–123 (2003). CASPubMed Google Scholar
Campbell, U. C., Lalwani, K., Hernandez, L., Kinney, G. G., Conn, P. J. & Bristow, L. J. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology (Berl.)175, 310–318 (2004). CAS Google Scholar
Rodriguez, A. et al. A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol. Pharmacol.68, 1793–1802 (2005). This study reports the initial discovery of a GPCR NAM that has partial antagonist activity as well as being a novel, neutral allosteric-site ligand. CASPubMed Google Scholar
Marino, M. J. & Conn, P. J. Direct and indirect modulation of the N-methyl D-aspartate receptor. Curr. Drug Target CNS Neurol. Disord.1, 1–16 (2002). CAS Google Scholar
Moghaddam, B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl.)174, 39–44 (2004). CAS Google Scholar
Alagarsamy, S., Sorensen, S. D. & Conn, P. J. Coordinate regulation of metabotropic glutamate receptors. Curr. Opin. Neurobiol.11, 357–362 (2001). CASPubMed Google Scholar
Mannaioni, G., Marino, M. J., Valenti, O., Traynelis, S. F. & Conn, P. J. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci.21, 5925–5934 (2001). CASPubMedPubMed Central Google Scholar
Lindsley, C. W. et al. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr. Top. Med. Chem.6, 771–785 (2006). CASPubMed Google Scholar
Alagarsamy, S., Marino, M. J., Rouse, S. T., Gereau, R. W., Heinemann, S. F. & Conn, P. J. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nature Neurosci.2, 234–240 (1999a). CASPubMed Google Scholar
O'Brien, J. A. et al. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol. Pharmacol.64, 731–740 (2003). Initial discovery of mGluR5-positive allosteric modulators (PAMs) and demonstration that compounds in a single structural class can have PAM, NAM and neutral allosteric site activity. CASPubMed Google Scholar
O'Brien, J. A. et al. A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J. Pharmacol. Exp. Ther.309, 568–577 (2004). CASPubMed Google Scholar
Lindsley, C. W. et al. Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1, 3-diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J. Med. Chem.47, 5825–5828 (2004). CASPubMed Google Scholar
Kinney, G. G. et al. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J. Pharmacol. Exp. Ther.313, 199–206 (2005). CASPubMed Google Scholar
Zhao, Z. et al. Challenges in the development of mGluR5 positive allosteric modulators: the discovery of CPPHA. Bioorg Med. Chem. Lett.17, 1386–1391 (2007). CASPubMed Google Scholar
Chen, Y. et al. Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol. Pharmacol.71, 1389–1398 (2007). CASPubMed Google Scholar
Chen, Y., Goudet, C., Pin, J. P. & Conn, P. J. N-{4-Chloro-2-[(1, 3-dioxo-1, 3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol. Pharmacol.73, 909–18 (2008). CASPubMed Google Scholar
de Paulis, T. et al. Substituent effects of N-(1, 3-diphenyl-1 H-pyrazol-5-yl) benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes. J. Med. Chem.49, 3332–3344 (2006). CASPubMed Google Scholar
Epping-Jordan, M. P. et al. In vivo characterization of mGluR5 positive allosteric modulators as novel treatments for schizophrenia and cognitive dysfunction. Neuropharmacol.49, 243 (2005). Google Scholar
Darrah, J. M., Stefani, M. R. & Moghaddam, B. Interaction of N-methyl-D-aspartate and group 5 metabotropic glutamate receptors on behavioral flexibility using a novel operant set-shift paradigm. Behav. Pharmacol.19, 225–234 (2008). CASPubMedPubMed Central Google Scholar
Schoepp, D. D., Wright, R. A., Levine, L. R., Gaydos, B. & Potter, W. Z. LY354740, an mGlu2/3 receptor agonist as a novel approach to trat anxiety/stress. Stress6, 189–197 (2003). CASPubMed Google Scholar
Swanson, C. J., Bures, M., Johnson, M. P., Linden, A. M., Monn, J. A. & Schoepp, D. D. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nature Rev. Drug Discov.4, 131–144 (2005). CAS Google Scholar
Schoepp, D. D. & Marek, G. J. Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr. Drug Target CNS Neurol. Disord.1, 215–225 (2002). CAS Google Scholar
Conn, P. J., Tamminga, C., Schoepp, D. D. & Lindsley, C. Schizophrenia: moving beyond monoamine antagonists. Mol. Interv8, 99–107 (2008b).
Grillon, C., Cordova, J., Levine, L. R. & Morgan, C. A. 3rd. Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl.)168, 446–454 (2003). CAS Google Scholar
Patil, S. T. et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature Med.13, 1102–1107 (2007). CASPubMed Google Scholar
Fell, M. J., Svensson, K. A., Johnson, B. G. & Schoepp, D. D. Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (−)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4, 6-dicarboxylic acid (LY404039). J. Pharmacol. Exp. Ther.326, 209–217 (2008). CASPubMed Google Scholar
Galici, R., Echemendia, N. G., Rodriguez, A. L. & Conn, P. J. A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J. Pharmacol. Exp. Ther.315, 1181–1187 (2005). CASPubMed Google Scholar
Johnson, M. P. et al. Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2, 2, 2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J. Med. Chem.46, 3189–3192 (2003). CASPubMed Google Scholar
Lorrain, D. S. et al. Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology28, 1622–1632 (2003). CASPubMed Google Scholar
Schaffhauser, H. et al. Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol. Pharmacol.64, 798–810 (2003). CASPubMed Google Scholar
Pinkerton, A. B. et al. Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators. Bioorg Med. Chem. Lett.15, 1565–1571 (2005). CASPubMed Google Scholar
Cube, R. V. et al. 3-(2-Ethoxy-4-{4-[3-hydroxy-2-methyl-4-(3-methylbutanoyl)phenoxy]butoxy}phenyl)propanoic acid: a brain penetrant allosteric potentiator at the metabotropic glutamate receptor 2 (mGluR2). Bioorg Med. Chem. Lett.15, 2389–2393 (2005). CASPubMed Google Scholar
Galici, R. et al. Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J. Pharmacol. Exp. Ther.318, 173–185 (2006). CASPubMed Google Scholar
Rowe, B. A. et al. Transposition of three amino acids transforms the human metabotropic glutamate receptor (mGluR)-3 positive allosteric modulation site to mGluR2, and additional characterization of the mGluR2 positive allosteric modulation Site. J. Pharmacol. Exp. Ther. Apr 22 2008 (epub ahead of print).
Poisik, O. et al. Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology49, 135–145 (2005). Google Scholar
Bennyworth, M. et al. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol. Pharmacol.72, 477–484 (2007). Google Scholar
Lorrain, D. S., Baccei, C. S., Bristow, L. J., Anderson, J. J. & Varney, M. A. Effects of ketamine and _N_-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience117, 697–706 (2003a).
Moghaddam, B. & Adams, B. W. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science281, 1349–1352 (1998). CASPubMed Google Scholar
Marek, G. J., Wright, R. A., Schoepp, D. D., Monn, J. A. & Aghajanian, G. K. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J. Pharmacol. Exp. Ther.292, 76–87 (2000). CASPubMed Google Scholar
Johnson, M. P. et al. Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology (Berl.)179, 271–283 (2005). CAS Google Scholar
Govek, S. P. et al. Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): efficacy in an animal model for schizophrenia. Bioorg Med. Chem. Lett.15, 4068–4072 (2005). CASPubMed Google Scholar
Conn, P. J., Battaglia, G., Marino, M. J. & Nicoletti, F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nature Rev. Neurosci.6, 787–798 (2005). CAS Google Scholar
Poewe, W. H., Lees, A. J. & Stern, G. M. Treatment of motor fluctuations in Parkinson's disease with an oral sustained-release preparation of L-dopa: clinical and pharmacokinetic observations. Clin. Neuropharmacol.9, 430–439 (1986). CASPubMed Google Scholar
Wichmann, T. & DeLong, M. R. Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv. Neurol.91, 9–18 (2003). PubMed Google Scholar
Bradley, S. R. et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J. Neurosci.20, 3085–3094 (2000). CASPubMedPubMed Central Google Scholar
Valenti, O. et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J. Neurosci.23, 7218–7226 (2003). CASPubMedPubMed Central Google Scholar
Lopez, S. et al. Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson's disease. J. Neurosci.27, 6701–6711 (2007). CASPubMedPubMed Central Google Scholar
Marino, M. J. et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc. Natl Acad. Sci. USA100, 13668–13673 (2003). Discovery of a novel mGluR4 PAM and demonstration that this compound has anti-parkinsonian activity in animal models. CASPubMedPubMed Central Google Scholar
Niswender, C. M. et al. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol. Pharmacol.74, 1345–1358 (2008). CASPubMed Google Scholar
Maj, M. et al. (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology45, 895–906 (2003). CASPubMed Google Scholar
Jones, P., Xiang, Z. & Conn, P. J. Metabotropic glutamate receptors mGluR4 and mGluR8 regulate transmission in the lateral olfactory tract-piriform. Neuropharmacol. (in the press).
Valenti, O., Mannaioni, G., Seabrook, G. R., Conn, P. J. & Marino, M. J. Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther.313, 1296–1304 (2005). CASPubMed Google Scholar
Ayala, J. E., Niswender, C. M., Luo, Q., Banko, J. L. & Conn, P. J. Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacol.54, 804–814 (2008). CAS Google Scholar
Battaglia, G. et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J. Neurosci.26, 7222–7229 (2006). CASPubMedPubMed Central Google Scholar
Mathiesen, J. M., Svendsen, N., Brauner-Osborne, H., Thomsen, C. & Ramirez, M. T. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br. J. Pharmacol.138, 1026–1030 (2003). CASPubMedPubMed Central Google Scholar
Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Rev. Drug Discov.6, 721–733 (2007). CAS Google Scholar
Clader, J. W. & Wang, Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Curr. Pharm. Des11, 3353–3361 (2005). CASPubMed Google Scholar
Bymaster, F. P., Felder, C., Ahmed, S. & McKinzie, D. Muscarinic receptors as a target for drugs treating schizophrenia. Curr. Drug Targets. CNS Neurol. Disord.1, 163–181 (2002). CASPubMed Google Scholar
Shekhar, A. et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry165, 1033–1039 (2008). PubMed Google Scholar
Greenlee, W. et al. Muscarinic agonists and antagonists in the treatment of Alzheimer's disease. Farmaco56, 247–250 (2001). CASPubMed Google Scholar
Langmead, C. J. et al. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28–21 Br. J. Pharmacol.154, 1104–1115 (2008). CASPubMedPubMed Central Google Scholar
Spalding, T. A. et al. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol. Pharmacol.61, 1297–1302 (2002). CASPubMed Google Scholar
Sur, C. et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl Acad. Sci. USA100, 13674–13679 (2003). CASPubMedPubMed Central Google Scholar
Lazareno, S. et al. Allosteric effects of four stereoisomers of a fused indole ring system with 3H-N-methylscopolamine and acetylcholine at M1-M4 muscarinic receptors. Life Sci.64, 519–26 (1999). CASPubMed Google Scholar
Jones, C. K. et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor reduces amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. (in the press).
Chan, W. Y. et al.Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA (in the press).
Shirey, J. K. et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nature Chem. Biol.4, 42–50 (2008). Together with reference 104, important studies identifying allosteric modulation of the M4muscarinic receptor as a novel approach for the treatment of CNS disorders. CAS Google Scholar
Brady, A. et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotion behavior in rats. J. Pharmacol. Exp. Ther. (in the press).
Nawaratne, V. et al. New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol. Pharmacol.74, 1119–1131 (2008). CASPubMed Google Scholar
Black, J. W. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B Biol. Sci.220, 141–162 (1983). CASPubMed Google Scholar
Kenakin, T. Allosteric agonist modulators. J. Recept Signal Transduct. Res.27, 247–259 (2007). CASPubMed Google Scholar
Gether, U. & Kobilka, B. K. G protein-coupled receptors. II. Mechanism of agonist activation. J. Biol. Chem.273, 17979–17982 (1998). CASPubMed Google Scholar
Leppik, I. E. Antiepileptic drugs in development: prospects for the near future. Epilepsia35, Suppl 4, 29–40 (1994). Google Scholar
Matsui, H., Lazareno, S. & Birdsall, N. J. Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol. Pharmacol.47, 88–98 (1995). CASPubMed Google Scholar
Gnagey, A. L., Seidenberg, M. & Ellis, J. Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol. Pharmacol.56, 1245–1253 (1999). CASPubMed Google Scholar
Krejci, A. & Tucek, S. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors. Mol. Pharmacol.60, 761–767 (2001). CASPubMed Google Scholar
Buller, S., Zlotos, D. P., Mohr, K. & Ellis, J. Allosteric site on muscarinic acetylcholine receptors: a single amino acid in transmembrane region 7 is critical to the subtype selectivities of caracurine V derivatives and alkane-bisammonium ligands. Mol. Pharmacol.61, 160–168 (2002). CASPubMed Google Scholar
Voigtlander, U. et al. Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. Mol. Pharmacol.64, 21–31 (2003). PubMed Google Scholar
Huang, X. P., Prilla, S., Mohr, K. & Ellis, J. Critical amino acid residues of the common allosteric site on the M2 muscarinic acetylcholine receptor: more similarities than differences between the structurally divergent agents gallamine and bis(ammonio)alkane-type hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide. Mol. Pharmacol.68, 769–778 (2005). CASPubMed Google Scholar
Prilla, S., Schrobang, J., Ellis, J., Holtje, H. D. & Mohr, K. Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. Mol. Pharmacol.70, 2181–2193 (2006). Google Scholar
Avlani, V., May, L. T., Sexton, P. M. & Christopoulos, A. Application of a kinetic model to the apparently complex behavior of negative and positive allosteric modulators of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther.308, 1062–1072 (2004). CASPubMed Google Scholar
Jakubik, J., Krejci, A. & Dolezal, V. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J. Pharmacol. Exp. Ther.313, 688–696 (2005). CASPubMed Google Scholar
Liaw, C. W., Grigoriadis, D. E., Lorang, M. T., De Souza, E. B. & Maki, R. A. Localization of agonist- and antagonist-binding domains of human corticotropin-releasing factor receptors. Mol. Endocrinol.11, 2048–2053 (1997). CASPubMed Google Scholar
Dragic, T. et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA97, 5639–5644 (2000). CASPubMedPubMed Central Google Scholar
Gerlach, L. O., Skerlj, R. T., Bridger, G. J. & Schwartz, T. W. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J. Biol. Chem.276, 14153–14160 (2001). CASPubMed Google Scholar
Tsamis, F. et al. Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J. Virol.77, 5201–5208 (2003). CASPubMedPubMed Central Google Scholar
Rosenkilde, M. M. et al. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J. Biol. Chem.279, 3033–3041 (2004). CASPubMed Google Scholar
Maeda, K. et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J. Virol.78, 8654–8662 (2004). CASPubMedPubMed Central Google Scholar
Maeda, K. et al. Structural and molecular interactions of CCR5 inhibitors with CCR5. J. Biol. Chem.281, 12688–12698 (2006). CASPubMed Google Scholar
Hemstapat, K., de Paulis, T., Chen, Y., Brady, A. E., Grover, V. K., Alagille, D., Tamagnan, G. D., Conn, P. J. A novel class of positive allosteric modulators of mGluR1 interact with a site distinct from that of negative allosteric modulators. Mol. Pharmacol.70, 616–626 (2006). CASPubMed Google Scholar
Dupuis, D. S., Relkovic, D., Lhuillier, L., Mosbacher, J. & Kaupmann, K. Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N, N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4, 6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol. Pharmacol.70, 2027–2036 (2006). CASPubMed Google Scholar
Pagano, A. et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem.275, 33750–33758 (2000). CASPubMed Google Scholar
Knoflach, F. et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl Acad. Sci. USA98, 13402–13407 (2001). CASPubMedPubMed Central Google Scholar
Baez, M. et al. Molecular mapping of a subtype selective site for positive allosteric modulation of the mGlu2 receptor. Neuropharmacol. Abstr.43, 274–275 (2002). Google Scholar
Malherbe, P. et al. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J. Biol. Chem.278, 8340–8347 (2003). CASPubMed Google Scholar
Petrel, C. et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J. Biol. Chem.278, 49487–49494 (2003). CASPubMed Google Scholar
Miedlich, S. U., Gama, L., Seuwen, K., Wolf, R. M. & Breitwieser, G. E. Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J. Biol. Chem.279, 7254–7263 (2004). CASPubMed Google Scholar
Binet, V. et al. The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J. Biol. Chem.279, 29085–29091 (2004). CASPubMed Google Scholar