Cunliffe, V. T., Furley, A. J. & Keenan, D. Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene. Mamm. Genome13, 245–252 (2002). ArticleCASPubMed Google Scholar
Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med.194, 127–134 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pearse, M. et al. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA86, 1614–1618 (1989). ArticleCASPubMedPubMed Central Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCASPubMed Google Scholar
Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Annu. Rev. Immunol.13, 93–126 (1995). ArticleCASPubMed Google Scholar
Kisielow, P., Teh, H. S., Blüthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature335, 730–733 (1988). ArticleCASPubMed Google Scholar
Scollay, R. G., Butcher, E. C. & Weissman, I. L. Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur. J. Immunol.10, 210–218 (1980). ArticleCASPubMed Google Scholar
Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol.9, 833–844 (2009). ArticleCASPubMed Google Scholar
Silva-Santos, B., Pennington, D. J. & Hayday, A. C. Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science307, 925–928 (2005). ArticleCASPubMed Google Scholar
Chin, R. K. et al. Lymphotoxin pathway directs thymic Aire expression. Nat. Immunol.4, 1121–1127 (2003). ArticlePubMed Google Scholar
Martins, V. C., Boehm, T. & Bleul, C. C. Ltβr signaling does not regulate Aire-dependent transcripts in medullary thymic epithelial cells. J. Immunol.181, 400–407 (2008). ArticleCASPubMed Google Scholar
Venanzi, E. S., Melamed, R., Mathis, D. & Benoist, C. The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc. Natl Acad. Sci. USA105, 15860–15865 (2008). ArticlePubMedPubMed Central Google Scholar
Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med.202, 33–45 (2005). ArticleCASPubMedPubMed Central Google Scholar
Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science298, 1395–1401 (2002). ArticleCASPubMed Google Scholar
Abramson, J., Giraud, M., Benoist, C. & Mathis, D. Aire's partners in the molecular control of immunological tolerance. Cell140, 123–135 (2010). ArticleCASPubMed Google Scholar
Guerau-de-Arellano, M., Mathis, D. & Benoist, C. Transcriptional impact of Aire varies with cell type. Proc. Natl Acad. Sci. USA105, 14011–14016 (2008). ArticlePubMedPubMed Central Google Scholar
Ferguson, B. J. et al. AIRE's CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J. Biol. Chem.283, 1723–1731 (2008). ArticleCASPubMed Google Scholar
Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol.2, 301–306 (2001). ArticleCASPubMed Google Scholar
Heino, M. et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur. J. Immunol.30, 1884–1893 (2000). ArticleCASPubMed Google Scholar
Kogawa, K. et al. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol. Lett.80, 195–198 (2002). ArticleCASPubMed Google Scholar
Su, M. A. et al. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J. Clin. Invest.118, 1712–1726 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol.8, 181–190 (2007). ArticleCASPubMed Google Scholar
Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science321, 843-7 (2008).
Poliani, P. L. et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am. J. Pathol.176, 1104–1112 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ikegami, H. Animal models of autoimmune polyglandular syndrome. Endocrinol. Metab. Clin. North Am.31, 431–439 (2002). ArticlePubMed Google Scholar
Ramsey, C. et al. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur. J. Immunol.36, 305–317 (2006). ArticleCASPubMed Google Scholar
Gotter, J. & Kyewski, B. Regulating self-tolerance by deregulating gene expression. Curr. Opin. Immunol.16, 741–745 (2004). ArticleCASPubMed Google Scholar
Johnnidis, J. B. et al. Chromosomal clustering of genes controlled by the aire transcription factor. Proc. Natl Acad. Sci. USA102, 7233–7238 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med.202, 805–815 (2005). ArticleCASPubMedPubMed Central Google Scholar
Babaya, N. et al. A new model of insulin-deficient diabetes: male NOD mice with a single copy of Ins1 and no Ins2. Diabetologia49, 1222–1228 (2006). ArticleCASPubMed Google Scholar
Jaeckel, E., Lipes, M. A. & von Boehmer, H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat. Immunol.5, 1028–1035 (2004). ArticleCASPubMed Google Scholar
Kuroda, N. et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J. Immunol.174, 1862–1870 (2005). ArticleCASPubMed Google Scholar
Niki, S. et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. J. Clin. Invest.116, 1292–1301 (2006). ArticleCASPubMedPubMed Central Google Scholar
Björses, P. et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am. J. Hum. Genet.66, 378–392 (2000). ArticlePubMedPubMed Central Google Scholar
Wolff, A. S. et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J. Clin. Endocrinol. Metab.92, 595–603 (2007). ArticleCASPubMed Google Scholar
Piirilä, H., Väliaho, J. & Vihinen, M. Immunodeficiency mutation databases (IDbases). Hum. Mutat.27, 1200–1208 (2006), [online] (2010). ArticleCASPubMed Google Scholar
Ahonen, P. Autoimmune polyendocrinopathy-candidosis--ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin. Genet.27, 535–542 (1985). ArticleCASPubMed Google Scholar
Aaltonen, J., Björses, P., Sandkuijl, L., Perheentupa, J. & Peltonen, L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nat. Genet.8, 83–87 (1994). ArticleCASPubMed Google Scholar
Björses, P. et al. Genetic homogeneity of autoimmune polyglandular disease type I. Am. J. Hum. Genet.59, 879–886 (1996). PubMedPubMed Central Google Scholar
Aaltonen, J. et al. High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res.7, 820–829 (1997). ArticleCASPubMed Google Scholar
Kudoh, J. et al. Localization of 16 exons to a 450-kb region involved in the autoimmune polyglandular disease type I (APECED) on human chromosome 21q22.3. DNA Res.4, 45–52 (1997). ArticleCASPubMed Google Scholar
Vogel, A. et al. Autoimmune regulator AIRE: evidence for genetic differences between autoimmune hepatitis and hepatitis as part of the autoimmune polyglandular syndrome type 1. Hepatology33, 1047–1052 (2001). ArticleCASPubMed Google Scholar
Peterson, P., Pitkänen, J., Sillanpää, N. & Krohn, K. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a model disease to study molecular aspects of endocrine autoimmunity. Clin. Exp. Immunol.135, 348–357 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pearce, S. H. et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am. J. Hum. Genet.63, 1675–1684 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heino, M. et al. Mutation analyses of North American APS-1 patients. Hum. Mutat.13, 69–74 (1999). ArticleCASPubMed Google Scholar
[No authors listed] An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet.17, 399–403 (1997).
Cervato, S. et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin. Endocrinol. (Oxf.)70, 421–428 (2009). Article Google Scholar
Cihakova, D. et al. Novel AIRE mutations and P450 cytochrome autoantibodies in Central and Eastern European patients with APECED. Hum. Mutat.18, 225–232 (2001). ArticleCASPubMed Google Scholar
Heino, M. et al. APECED mutations in the autoimmune regulator (AIRE) gene. Hum. Mutat.18, 205–211 (2001). ArticleCASPubMed Google Scholar
Husebye, E. S., Perheentupa, J., Rautemaa, R. & Kämpe, O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J. Intern. Med.265, 514–529 (2009). ArticleCASPubMed Google Scholar
Podkrajsek, K. T. et al. Detection of a complete autoimmune regulator gene deletion and two additional novel mutations in a cohort of patients with atypical phenotypic variants of autoimmune polyglandular syndrome type 1. Eur. J. Endocrinol.159, 633–639 (2008). ArticleCASPubMed Google Scholar
Buzi, F. et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome: time to review diagnostic criteria? J. Clin. Endocrinol. Metab.88, 3146–3148 (2003). ArticleCASPubMed Google Scholar
Hung, W., Migeon, C. J. & Parrott, R. H. A possible autoimmune basis for Addison's disease in three siblings, one with idiopathic hypoparathyroidism, pernicious anemia and superficial moniliasis. N. Engl. J. Med.269, 658–663 (1963). ArticleCASPubMed Google Scholar
Kogut, M. D. & Brinegar, C. H. Jr. Addison's disease and diabetes mellitus. J. Pediatr.81, 307–311 (1972). ArticleCASPubMed Google Scholar
Alimohammadi, M. et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N. Engl. J. Med.358, 1018–1028 (2008). ArticleCASPubMed Google Scholar
Kisand, K. et al. Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood112, 2657–2666 (2008). ArticleCASPubMedPubMed Central Google Scholar
Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med.207, 291–297 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med.207, 299–308 (2010). ArticleCASPubMedPubMed Central Google Scholar
Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell140, 845–858 (2010). ArticleCASPubMed Google Scholar
Rautemaa, R., Hietanen, J., Niissalo, S., Pirinen, S. & Perheentupa, J. Oral and oesophageal squamous cell carcinoma—a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol.43, 607–613 (2007). ArticlePubMed Google Scholar
Ward, L. et al. Severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy in an adolescent girl with a novel AIRE mutation: response to immunosuppressive therapy. J. Clin. Endocrinol. Metab.84, 844–852 (1999). CASPubMed Google Scholar
Padeh, S., Theodor, R., Jonas, A. & Passwell, J. H. Severe malabsorption in autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy syndrome successfully treated with immunosuppression. Arch. Dis. Child.76, 532–534 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Lust, J. A. & Phyliky, R. L. T-cell large granular lymphocytic leukemia and pure red cell aplasia in a patient with type I autoimmune polyendocrinopathy: response to immunosuppressive therapy. Mayo Clin. Proc.69, 1085–1088 (1994). ArticleCASPubMed Google Scholar
Ulinski, T. et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome with renal failure: impact of posttransplant immunosuppression on disease activity. J. Clin. Endocrinol. Metab.91, 192–195 (2006). ArticleCASPubMed Google Scholar
Ströbel, P. et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J. Pathol.211, 563–571 (2007). ArticleCASPubMed Google Scholar
Evoli, A. et al. Thymoma in patients with MG: characteristics and long-term outcome. Neurology59, 1844–1850 (2002). ArticleCASPubMed Google Scholar
Cetani, F. et al. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J. Clin. Endocrinol. Metab.86, 4747–4752 (2001). ArticleCASPubMed Google Scholar
Björses, P., Aaltonen, J., Horelli-Kuitunen, N., Yaspo, M. L. & Peltonen, L. Gene defect behind APECED: a new clue to autoimmunity. Hum. Mol. Genet.7, 1547–1553 (1998). ArticlePubMed Google Scholar
Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol.184, 3433–3441 (2010). ArticleCASPubMed Google Scholar
Ryan, K. R. et al. CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J. Allergy Clin. Immunol.116, 1158–1159 (2005). ArticleCASPubMed Google Scholar
Kekäläinen, E. et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol.178, 1208–1215 (2007). ArticlePubMed Google Scholar
Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol.4, 350–354 (2003). ArticleCASPubMed Google Scholar
Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl Acad. Sci. USA105, 11903–11908 (2008). ArticlePubMedPubMed Central Google Scholar
Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol.8, 351–358 (2007). ArticleCASPubMed Google Scholar
Gebre-Medhin, G. et al. Cytochrome P450IA2 and aromatic L-amino acid decarboxylase are hepatic autoantigens in autoimmune polyendocrine syndrome type I. FEBS Lett.412, 439–445 (1997). ArticleCASPubMed Google Scholar
Tuomi, T. et al. Antibodies to glutamic acid decarboxylase and insulin-dependent diabetes in patients with autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab.81, 1488–1494 (1996). CASPubMed Google Scholar
Söderbergh, A. et al. Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab.89, 557–562 (2004). ArticleCASPubMed Google Scholar
Ekwall, O. et al. Identification of tryptophan hydroxylase as an intestinal autoantigen. Lancet352, 279–283 (1998). ArticleCASPubMed Google Scholar
Krohn, K., Uibo, R., Aavik, E., Peterson, P. & Savilahti, K. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet339, 770–773 (1992). ArticleCASPubMed Google Scholar
Hubert, F. X. et al. Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. J. Immunol.182, 3902–3918 (2009). ArticleCASPubMed Google Scholar