Obesity-driven disruption of haematopoiesis and the bone marrow niche (original) (raw)
Withrow, D. & Alter, D. A. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes. Rev.12, 131–141 (2010). Article Google Scholar
Cara, J. F. & Chaiken, R. L. Type 2 diabetes and the metabolic syndrome in children and adolescents. Curr. Diab. Rep.6, 241–250 (2006). ArticlePubMed Google Scholar
Baker, J. L., Olsen, L. W. & Sorensen, T. I. Childhood body-mass index and the risk of coronary heart disease in adulthood. N. Engl. J. Med.357, 2329–2337 (2007). ArticleCASPubMedPubMed Central Google Scholar
Freedman, D. S., Mei, Z., Srinivasan, S. R., Berenson, G. S. & Dietz, W. H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J. Pediatr.150, 12–17 (2007). ArticlePubMed Google Scholar
Adams, K. F. et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N. Engl. J. Med.355, 763–778 (2006). ArticleCASPubMed Google Scholar
Carmona, R. H. The obesity crisis in America (US Surgeon General testimony before the Subcommittee on Education Reform Committee on Education and the Workforce, United States House of Representatives)[online], (2003). Google Scholar
Karlsson, E. A. & Beck, M. A. The burden of obesity on infectious disease. Exp. Biol. Med.235, 1412–1424 (2010). ArticleCAS Google Scholar
Wijga, A. et al. Comorbidities of obesity in school children: a cross-sectional study in the PIAMA birth cohort. BMC Public Health10, 184 (2010). ArticlePubMedPubMed Central Google Scholar
Devlin, M. J. et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res.25, 2078–2088 (2010). ArticlePubMedPubMed Central Google Scholar
Kawamoto, H., Ikawa, T., Masuda, K., Wada, H. & Katsura, Y. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol. Rev.238, 23–36 (2010). ArticleCASPubMed Google Scholar
Lang, R. A. et al. Transgenic mice expressing a hemopoietic growth factor gene (GM–CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell51, 675–686 (1987). ArticleCASPubMed Google Scholar
Bonilla, F. A. & Oettgen, H. C. Adaptive immunity. J. Allergy Clin. Immunol.125, S33–S40 (2010). ArticlePubMed Google Scholar
Singh, P. et al. Vaccinia virus infection modulates the hematopoietic cell compartments in the bone marrow. Stem Cells26, 1009–1016 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cheshier, S. H., Prohaska, S. S. & Weissman, I. L. The effect of bleeding on hematopoietic stem cell cycling and self-renewal. Stem Cells Dev.16, 707–718 (2007). ArticleCASPubMed Google Scholar
Danchakoff, V. Origin of the blood cells. Development of the haematopoietic organs and regeneration of the blood cells from the standpoint of the monophyletic school. Anat. Rec.10, 397–413 (1916). Article Google Scholar
Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res.14, 213–222 (1961). ArticleCASPubMed Google Scholar
van Os, R., Kamminga, L. M. & de Haan, G. Stem cell assays: something old, something new, something borrowed. Stem Cells22, 1181–1190 (2004). ArticlePubMed Google Scholar
de Bruijn, M. F., Speck, N. A., Peeters, M. C. E. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J.19, 2465–2474 (2000). ArticleCASPubMedPubMed Central Google Scholar
Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E. & Weissman, I. L. Identification of a lineage of multipotent hematopoietic progenitors. Development124, 1929–1939 (1997). CASPubMed Google Scholar
Miller, P. H., Knapp, D. J. & Eaves, C. J. Heterogeneity in hematopoietic stem cell populations: implications for transplantation. Curr. Opin. Hematol.20, 257–264 (2013). ArticlePubMed Google Scholar
Ema, H., Morita, Y. & Suda, T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. Hematol.42, 74–82 (2014). ArticleCASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCASPubMed Google Scholar
Zhu, J. & Emerson, S. G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene21, 3295–3313 (2002). ArticleCASPubMed Google Scholar
Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell15, 169–184 (2014). ArticleCASPubMed Google Scholar
Teles, J. et al. Transcriptional regulation of lineage commitment—a stochastic model of cell fate decisions. PLoS Comput. Biol.9, e1003197 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature502, 232–236 (2013). ArticleCASPubMed Google Scholar
Dzierzak, E. & Speck, N. A. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol.9, 129–136 (2008). ArticleCASPubMedPubMed Central Google Scholar
Metcalf, D. Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells25, 2390–2395 (2007). ArticlePubMed Google Scholar
Carnot, P. & Deflandre, C. Sur l'activité hémopoiétique de sérum au cours de la régenération du sang [French]. C.R. Acad. Sci.143, 384–386 (1906). CAS Google Scholar
Jacobson, L. O., Goldwasser, E., Fried, W. & Plzak, L. Role of the kidney in erythropoiesis. Nature179, 633–634 (1957). ArticleCASPubMed Google Scholar
Kaushansky, K. Lineage-specific hematopoietic growth factors. N. Engl. J. Med.354, 2034–2045 (2006). ArticleCASPubMed Google Scholar
Lennartsson, J. & Rönnstrand, L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev.92, 1619–1649 (2012). ArticleCASPubMed Google Scholar
Kirito, K., Fox, N. & Kaushansky, K. Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells. Mol. Cell. Biol.24, 6751–6762 (2004). ArticleCASPubMedPubMed Central Google Scholar
Furitsu, T. et al. Identification of mutations in the coding sequence of the proto-oncogene c-Kit in a human mast cell leukemia cell line causing ligand-independent activation of c-Kit product. J. Clin. Invest.92, 1736–1744 (1993). ArticleCASPubMedPubMed Central Google Scholar
Pardanani, A. D. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1,182 patients. Blood108, 3472–3476 (2006). ArticleCASPubMed Google Scholar
Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol.8, 290–301 (2008). ArticleCASPubMed Google Scholar
Challen, G. A., Boles, N., Lin, K. K. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytometry A75, 14–24 (2009). ArticlePubMedPubMed Central Google Scholar
Frisch, B. J., Porter, R. L. & Calvi, L. M. Hematopoietic niche and bone meet. Curr. Opin. Support. Palliat. Care2, 211–217 (2008). ArticlePubMedPubMed Central Google Scholar
Arai, F. et al. Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). ArticleCASPubMed Google Scholar
Tzeng, Y.-S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood117, 429–439 (2011). ArticleCASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). ArticleCASPubMed Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). ArticleCASPubMed Google Scholar
Weber, J. M. & Calvi, L. M. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone46, 281–285 (2010). ArticleCASPubMed Google Scholar
Varnum-Finney, B. et al. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest.121, 1207–1216 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chiba, H. et al. Diabetes impairs the interactions between long-term hematopoietic stem cells and osteopontin-positive cells in the endosteal niche of mouse bone marrow. Am. J. Physiol. Cell Physiol.305, C693–C703 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fox, N., Priestley, G., Papayannopoulou, T. & Kaushansky, K. Thrombopoietin expands hematopoietic stem cells after transplantation. J. Clin. Invest.110, 389–394 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. D. & Wagers, A. J. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat. Rev. Mol. Cell Biol.12, 643–655 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bouxsein, M. L. & Rosen, C. J. Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol.2, 35–43 (2006). ArticleCASPubMed Google Scholar
Manolagas, S. C. & Almeida, M. Gone with the Wnts: β-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol. Endocrinol.21, 2605–2614 (2007). ArticleCASPubMed Google Scholar
Chambers, S. & Goodell, M. Hematopoietic stem cell aging: wrinkles in stem cell potential. Stem Cell Rev. Rep.3, 201–211 (2007). ArticleCAS Google Scholar
Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev.19, 461–468 (2009). ArticleCASPubMed Google Scholar
Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature495, 227–230 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nuttall, M. et al. Adipocytes and the regulation of bone remodeling: a balancing act. Calcif. Tissue Int.94, 78–87 (2014). ArticleCASPubMed Google Scholar
Chen, J.-R. et al. Obesity reduces bone density associated with activation of PPARγ and suppression of Wnt/β-catenin in rapidly growing male rats. PLoS ONE5, e13704 (2010). ArticleCASPubMedPubMed Central Google Scholar
Keats, E. C., Dominguez, J. M., Grant, M. B. & Khan, Z. A. Switch from canonical to noncanonical Wnt signaling mediates high glucose-induced adipogenesis. Stem Cells32, 1649–1660 (2014). ArticleCASPubMedPubMed Central Google Scholar
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell3, 301–313 (2008). ArticleCASPubMed Google Scholar
da Silva Meirelles, L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci.119, 2204–2213 (2006). ArticleCASPubMed Google Scholar
Karp, J. M. & Leng Teo, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell4, 206–216 (2009). ArticleCASPubMed Google Scholar
Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med.12, 657–664 (2006). ArticleCASPubMed Google Scholar
Halade, G. V., El Jamali, A., Williams, P. J., Fajardo, R. J. & Fernandes, G. Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol.46, 43–52 (2011). ArticleCASPubMed Google Scholar
Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N. J. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood117, 1540–1549 (2011). ArticleCASPubMed Google Scholar
Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res.175, 266–276 (1988). ArticleCASPubMed Google Scholar
Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature439, 599–603 (2006). ArticleCASPubMed Google Scholar
Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature457, 97–101 (2009). ArticleCASPubMed Google Scholar
Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Kiel, M. J., Radice, G. L. & Morrison, S. J. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell1, 204–217 (2007). ArticleCASPubMed Google Scholar
Garrett, R. W. & Emerson, S. G. Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell4, 503–506 (2009). ArticleCASPubMed Google Scholar
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature481, 457–462 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature495, 231–235 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ellis, S. L. et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood118, 1516–1524 (2011). ArticleCASPubMed Google Scholar
Wu, J. Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc. Natl Acad. Sci. USA105, 16976–16981 (2008). ArticlePubMedPubMed Central Google Scholar
Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.-I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity20, 707–718 (2004). ArticleCASPubMed Google Scholar
Aguila, H. L. et al. Osteoblast-specific overexpression of human interleukin-7 rescues the bone mass phenotype of interleukin-7-deficient female mice. J. Bone Miner. Res.27, 1030–1042 (2012). ArticleCASPubMed Google Scholar
Wu, J. Y., Scadden, D. T. & Kronenberg, H. M. Role of the osteoblast lineage in the bone marrow hematopoietic niches. J. Bone Miner. Res.24, 759–764 (2009). ArticlePubMedPubMed Central Google Scholar
Griffith, J. F. et al. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J. Magn. Reson. Imaging36, 225–230 (2012). ArticlePubMed Google Scholar
Koppen, A. & Kalkhoven, E. Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett.584, 3250–3259 (2010). ArticleCASPubMed Google Scholar
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev.84, 277–359 (2004). ArticleCASPubMed Google Scholar
Tang, Q. Q. & Lane, M. D. Adipogenesis: from stem cell to adipocyte. Annu. Rev. Biochem.81, 715–736 (2012). ArticleCASPubMed Google Scholar
Ahmadian, M., Wang, Y. & Sul, H. S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol.42, 555–559 (2010). ArticleCASPubMed Google Scholar
Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol.7, 885–896 (2006). ArticleCASPubMed Google Scholar
Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes56, 2910–2918 (2007). ArticleCASPubMed Google Scholar
Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med.15, 914–920 (2009). ArticleCASPubMed Google Scholar
Zeyda, M. & Stulnig, T. M. Obesity, inflammation, and insulin resistance: a mini-review. Gerontology55, 379–386 (2009). ArticleCASPubMed Google Scholar
Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol.185, 1836–1845 (2010). ArticleCASPubMed Google Scholar
Ong, W. K. & Sugii, S. Adipose-derived stem cells: fatty potentials for therapy. Int. J. Biochem. Cell Biol.45, 1083–1086 (2013). ArticleCASPubMed Google Scholar
Han, J. et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood115, 957–964 (2009). ArticleCASPubMed Google Scholar
Grenier, G. et al. Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells25, 3101–3110 (2007). ArticleCASPubMed Google Scholar
Lin, R.-Z. et al. Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential. Angiogenesis16, 735–744 (2013). ArticleCASPubMedPubMed Central Google Scholar
Poglio, S. et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells28, 2065–2072 (2010). ArticleCASPubMed Google Scholar
Heneidi, S. et al. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS ONE8, e64752 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nishiwaki, S. et al. Efficacy and safety of human adipose tissue-derived mesenchymal stem cells for supporting hematopoiesis. Int. J. Hematol.96, 295–300 (2012). ArticlePubMed Google Scholar
Poglio, S. et al. In situ production of innate immune cells in murine white adipose tissue. Blood120, 4952–4962 (2012). ArticleCASPubMed Google Scholar
Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev.11, 11–18 (2010). ArticlePubMed Google Scholar
Sniderman, A. D., Bhopal, R., Prabhakaran, D., Sarrafzadegan, N. & Tchernof, A. Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int. J. Epidemiol.36, 220–225 (2007). ArticlePubMed Google Scholar
Joe, A. W., Yi, L., Even, Y., Vogl, A. W. & Rossi, F. M. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells27, 2563–2570 (2009). ArticleCASPubMed Google Scholar
Krings, A. et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone50, 546–552 (2012). ArticleCASPubMed Google Scholar
Lecka-Czernik, B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone50, 534–539 (2012). ArticleCASPubMed Google Scholar
Saric, M. & Kronzon, I. Aortic atherosclerosis and embolic events. Curr. Cardiol. Rep.14, 342–349 (2012). ArticlePubMed Google Scholar
Ibrahim, S. H., Kohli, R. & Gores, G. J. Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastroenterol. Nutr.53, 131–140 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bredella, M. A. et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity19, 49–53 (2011). ArticleCASPubMed Google Scholar
Newton, A., L, Hanks, L., J., Davis, M. & Casazza, K. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls. Bonekey Rep.2, 315 (2013). Article Google Scholar
Cohen, A. et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J. Clin. Endocrinol. Metab.98, 2562–2572 (2013). ArticleCASPubMedPubMed Central Google Scholar
Trudel, G. et al. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J. Appl. Physiol.107, 540–548 (2009). ArticlePubMed Google Scholar
Dixit, V. D. Adipose–immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol.84, 882–89 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mertz, D. et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ347, f5061 (2013). ArticlePubMedPubMed Central Google Scholar
Falagas, M. E. & Kompoti, M. Obesity and infection. Lancet Infect. Dis.6, 438–446 (2006). ArticlePubMed Google Scholar
Mancuso, P. Obesity and respiratory infections: does excess adiposity weigh down host defense? Pulm. Pharmacol. Ther.26, 412–419 (2013). ArticleCASPubMed Google Scholar
Huttunen, R. & Syrjanen, J. Obesity and the risk and outcome of infection. Int. J. Obes.37, 333–340 (2013). ArticleCAS Google Scholar
Choban, P. S., Heckler, R., Burge, J. C. & Flancbaum, L. Increased incidence of nosocomial infections in obese surgical patients. Am. Surg.61, 1001–1005 (1995). CASPubMed Google Scholar
Dossett, L. A. et al. Obesity and site-specific nosocomial infection risk in the intensive care unit. Surg. Infect.10, 137–142 (2009). Article Google Scholar
Chan, M. E., Adler, B. J., Green, D. E. & Rubin, C. T. Bone structure and B-cell populations, crippled by obesity, are partially rescued by brief daily exposure to low-magnitude mechanical signals. FASEB J.26, 4855–4863 (2012). ArticleCASPubMedPubMed Central Google Scholar
Karlsson, E. A., Sheridan, P. A. & Beck, M. A. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. J. Nutr.140, 1691–1697 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karlsson, E. A., Sheridan, P. A. & Beck, M. A. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J. Immunol.184, 3127–3133 (2010). ArticleCASPubMed Google Scholar
Smith, A. G., Sheridan, P. A., Harp, J. B. & Beck, M. A. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J. Nutr.137, 1236–1243 (2007). ArticleCASPubMed Google Scholar
Yokota, T. et al. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase–prostaglandin pathway in stromal cells. J. Immunol.171, 5091–5099 (2003). ArticleCASPubMed Google Scholar
Bilwani, F. A. & Knight, K. L. Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis. J. Immunol.189, 4379–4386 (2012). ArticleCASPubMed Google Scholar
Pini, M., Rhodes, D. H. & Fantuzzi, G. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice. Cytokine56, 708–716 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zaldivar, F. et al. Body fat and circulating leukocytes in children. Int. J. Obes.30, 906–911 (2006). ArticleCAS Google Scholar
Viardot, A. et al. Obesity is associated with activated and insulin resistant immune cells. Diabetes Metab. Res. Rev.28, 447–454 (2012). ArticleCASPubMed Google Scholar
Wagner, N.-M. et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity21, 461–468 (2013). ArticleCASPubMed Google Scholar
Lynch, L. A. et al. Are natural killer cells protecting the metabolically healthy obese patient? Obesity17, 601–605 (2009). ArticleCASPubMed Google Scholar
Zhu, R. J., Wu, M. Q., Li, Z. J., Zhang, Y. & Liu, K. Y. Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int. J. Hematol.97, 58–72 (2013). ArticleCASPubMed Google Scholar
Green, D. E., Adler, B. J., Chan, M. E. & Rubin, C. T. Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J. Bone Miner. Res.27, 749–759 (2011). Article Google Scholar
Green, D. E. et al. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes. PLoS ONE8, e64952 (2013). ArticleCASPubMedPubMed Central Google Scholar
Adler, B. J., Green, D. E., Pagnotti, G. M., Chan, M. E. & Rubin, C. T. High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS ONE9, e90639 (2014). ArticleCASPubMedPubMed Central Google Scholar
Claycombe, K., King, L. E. & Fraker, P. J. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl Acad. Sci. USA105, 2017–2021 (2008). ArticlePubMedPubMed Central Google Scholar
Trottier, M. D., Naaz, A., Li, Y. & Fraker, P. J. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl Acad. Sci. USA109, 7622–7629 (2012). ArticlePubMedPubMed Central Google Scholar
Spindler, T. J., Tseng, A. W., Zhou, X. & Adams, G. B. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev.23, 434–441 (2014). ArticleCASPubMed Google Scholar
Chitteti, B. R. et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood115, 3239–3248 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pratley, R. E., Wilson, C. & Bogardus, C. Relation of the white blood cell count to obesity and insulin resistance: effect of race and gender. Obes. Res.3, 563–571 (1995). ArticleCASPubMed Google Scholar
Herishanu, Y., Rogowski, O., Polliack, A. & Marilus, R. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur. J. Haematol.76, 516–520 (2006). ArticlePubMed Google Scholar
Procaccini, C., Jirillo, E. & Matarese, G. Leptin as an immunomodulator. Mol. Aspects Med.33, 35–45, (2012). ArticleCASPubMed Google Scholar
Carbone, F., La Rocca, C. & Matarese, G. Immunological functions of leptin and adiponectin. Biochimie94, 2082–2088 (2012). ArticleCASPubMed Google Scholar
do Carmo, L. S. et al. A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Exp. Biol. Med.238, 375–384 (2013). ArticleCAS Google Scholar
Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P. & Pino, A. M. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr.19, 109–124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Moerman, E. J., Teng, K., Lipschitz, D. A. & Lecka-Czernik, B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell3, 379–389 (2004). ArticleCASPubMed Google Scholar
Villareal, D. T. et al. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med.364, 1218–1229 (2011). ArticleCASPubMedPubMed Central Google Scholar
Foster-Schubert, K. E. et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring)20, 1628–1638 (2012). ArticleCAS Google Scholar
Church, T., Earnest, C. P., Skinner, J. S. & Blair, S. N. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA297, 2081–2091 (2007). ArticleCASPubMed Google Scholar
Pescatello, L. S. et al. Exercise and hypertension. Med. Sci. Sports Exerc.36, 533–553 (2004). ArticlePubMed Google Scholar
Fealy, C. E. et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. J. Appl. Physiol.113, 1–6 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rantalainen, T. et al. Differential effects of exercise on tibial shaft marrow density in young female athletes. J. Clin. Endocrinol. Metab.98, 2037–2044 (2013). ArticleCASPubMed Google Scholar
Sikiö, M. et al. Influence of exercise loading on magnetic resonance image texture of thigh soft tissues. Clin. Physiol. Funct. Imaging34, 370–376 (2013). ArticlePubMed Google Scholar
Menagh, P. J. et al. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J. Bone and Miner. Res.25, 757–768 (2010). CAS Google Scholar
Smilios, I., Tsoukos, P., Zafeiridis, A., Spassis, A. & Tokmakidis, S. P. Hormonal responses after resistance exercise performed with maximum and submaximum movement velocities. Appl. Physiol. Nutr. Metab.39, 351–357 (2013). ArticleCASPubMed Google Scholar
Kim, E. et al. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females. J. Sports Sci. Med.13, 91–96 (2014). PubMedPubMed Central Google Scholar
Akune, T. et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest.113, 846–855 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Treadmill training prevents bone loss by inhibition of PPARγ expression but not promoting of Runx2 expression in ovariectomized rats. Eur. J. Appl. Physiol.111, 1759–1767 (2011). ArticleCASPubMed Google Scholar
Rubin, C. T. et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl Acad. Sci. USA104, 17879–17884 (2007). ArticlePubMedPubMed Central Google Scholar
Luu, Y. K. et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J. Bone Miner. Res.24, 50–61 (2009). ArticleCASPubMed Google Scholar
Case, N. et al. Mechanical input restrains PPARγ2 expression and action to preserve mesenchymal stem cell multipotentiality. Bone52, 454–464 (2013). ArticleCASPubMed Google Scholar
Sen, B. et al. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal. Endocrinology149, 6065–6075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Case, N. et al. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J. Orthop. Res.28, 1531–1538 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. Biochem. Biophys. Res. Commun.445, 566–571 (2014). ArticleCASPubMed Google Scholar
Dolnikov, A. et al. GSK-3β inhibition promotes early engraftment of _ex vivo_-expanded haematopoietic stem cells. Cell Prolif.47, 113–123 (2014). ArticleCASPubMedPubMed Central Google Scholar