Bushman, F. Lateral DNA Transfer (Cold Spring Harbor Laboratory Press, New York, 2002). Google Scholar
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA87, 4576–4579 (1990). Proposal for a new classification of all living organisms based on the three domains of life and the universal tree. CASPubMedPubMed Central Google Scholar
Doolittle, R. F., Feng, D. F., Anderson, K. L. & Alberro, M. R. A naturally occurring horizontal gene transfer from a eukaryote to prokaryote. J. Mol. Evol.31, 383–388 (1990). CASPubMed Google Scholar
Smith, M. W., Feng, D. -F. & Doolittle, R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci.17, 489–493 (1992). CASPubMed Google Scholar
Golding, G. B. & Gupta, R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol. Evol. Biol.12, 1–6 (1995). CAS Google Scholar
Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote to eukaryotes transition. Microbiol. Mol. Biol. Rev.61, 456–502 (1997). CASPubMedPubMed Central Google Scholar
Doolittle, W. F. Phylogenetic classification and the universal tree. Science284, 2124–2128 (1999). An important view on the issues that surround the phylogenetic reconstruction of the universal tree. CASPubMed Google Scholar
Felmingham, D. & Washington, J. Trends in the antimicrobial susceptibility of bacterial respiratory tract pathogens — findings of the Alexander Project 1992–1996. J. Chemother.11, 5–21 (1999). CASPubMed Google Scholar
Brown, J. R., Zhang, J. & Hodgson, J. E. A bacterial antibiotic resistance gene with eukaryotic origins. Curr. Biol.8, R365–R367 (1998). CASPubMed Google Scholar
Dröge, M., Pühler, A. & Selbitschka, W. Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J. Biotechnol.64, 75–90 (1998). Reviews the studies on HGT and genetically modified (GM) organisms and finds little evidence for horizontal gene transfer from GM bacteria to eukaryotes in the field. PubMed Google Scholar
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
Salzberg, S. L., White, O., Peterson, J. & Eisen, J. A. Microbial genes in the human genome: lateral transfer or gene loss? Science292, 1903–1906 (2001). CASPubMed Google Scholar
Roelofs, J. & Van Haastert, P. J. Genes lost during evolution. Nature411, 1013–1014 (2001). CASPubMed Google Scholar
Stanhope, M. J. et al. Phylogenetic analyses of genomic and EST sequences do not support horizontal gene transfers between bacteria and vertebrates. Nature411, 940–944 (2001). CASPubMed Google Scholar
Fox, G. E. et al. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA74, 4537–4541 (1977). CASPubMedPubMed Central Google Scholar
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA51, 221–271 (1977). Google Scholar
Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science269, 496–512 (1995). CASPubMed Google Scholar
Gupta, R. S. & Golding, G. B. The origin of the eukaryotic cell. Trends Biochem. Sci.21, 166–171 (1996). CASPubMed Google Scholar
Feng, D. -F., Cho, G. & Doolittle, W. F. Determining divergence times with a protein clock: update and reevaluation. Proc. Natl Acad. Sci. USA94, 13028–13033 (1997). CASPubMedPubMed Central Google Scholar
Roger, A. J. & Brown, J. R. A chimeric origin for eukaryotes re-examined. Trends Biochem. Sci.21, 370–371 (1996). CASPubMed Google Scholar
Pennisi, E. Genome data shake tree of life. Science280, 672–674 (1998). CASPubMed Google Scholar
Pennisi, E. Is it time to uproot the tree of life? Science284, 1305–1307 (1999). CASPubMed Google Scholar
Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA95, 9413–9417 (1998). CASPubMedPubMed Central Google Scholar
Garcia-Vallvé, S., Romeu, A. & Palau, J. Horizontal gene transfer in bacterial and archaea complete genomes. Genome Res.10, 1719–1725 (2000). PubMedPubMed Central Google Scholar
Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature405, 299–304 (2000). CASPubMed Google Scholar
Lawrence, J. G. & Ochman, H. Reconciling the many faces of lateral gene transfer. Trends Microbiol.10, 1–3 (2002). A defence of the methods that detect HGT by using differences in nucleotide composition, in light of critiques by Ragan (references 23 and 24). CASPubMed Google Scholar
Ragan, M. Reconciling the many faces of lateral gene transfer: response. Trends Microbiol.10, 3 (2002). Google Scholar
Ragan, M. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett.201, 187–191 (2001). CASPubMed Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997). CASPubMedPubMed Central Google Scholar
Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature399, 323–329 (1999). CASPubMed Google Scholar
Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol.55, 709–742 (2001). CASPubMedPubMed Central Google Scholar
Koski, L. B. & Golding, B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol.52, 540–542 (2001). CASPubMed Google Scholar
Kyrpides, N. C. & Olsen, G. J. Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? Trends Genet.15, 298–299 (1999). CASPubMed Google Scholar
Logsdon, J. M. Jr & Faguy, D. M. Evolutionary genomics: Thermotoga heats up lateral gene transfer. Curr. Biol.9, R747–R751 (1999). CASPubMed Google Scholar
Grauer, D. & Li, W. H. Fundamentals of Molecular Evolution 2nd edn (Sinauer Associates, Sunderland, Massachusetts, 2000). A good introductory volume to molecular evolution. Google Scholar
Huynen, M., Snel, B. & Bork, P. Lateral gene transfer, genome surveys and the phylogeny of prokaryotes. Technical comments. Science286, 1443a (1999). Google Scholar
Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet.21, 108–110 (1999). CASPubMed Google Scholar
Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living organisms. Nucleic Acids Res.27, 4218–4222 (1999). CASPubMedPubMed Central Google Scholar
Doolittle, W. F. Lateral gene transfer, genome surveys and the phylogeny of prokaryotes. Technical comments. Science286, 1443a (1999). Google Scholar
Xiong, J., Inoue, K. & Bauer, C. E. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc. Natl Acad. Sci. USA95, 14851–14856 (1998). CASPubMedPubMed Central Google Scholar
Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science290, 972–977 (2000). CASPubMed Google Scholar
Hansmann, S. & Martin, W. Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int. J. Syst. Evol. Microbiol.50, 1655–1663 (2000). CASPubMed Google Scholar
Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence datasets. Nature Genet.28, 281–285 (2001). CASPubMed Google Scholar
Koonin, E. V., Aravind, L. & Kondrashov, A. S. The impact of comparative genomics on our understanding of evolution. Cell101, 573–576 (2000). CASPubMed Google Scholar
Gribaldo, S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol.181, 434–443 (1999). CASPubMedPubMed Central Google Scholar
Zambryski, P., Tempe, J. & Schell, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids. Cell56, 193–201 (1989). CASPubMed Google Scholar
Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl Acad. Sci. USA.99, 14280–14285 (2002). CASPubMedPubMed Central Google Scholar
Tourmen, Y. et al. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics80, 71–77 (2002). CASPubMed Google Scholar
Courvalin, P., Goussard, S. & Grillot-Courvalin, C. Gene transfer from bacteria to mammalian cells. C. R. Acad. Sci. Paris Life Sci.318, 1207–1212 (1995). CAS Google Scholar
Kunik, T. et al. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl Acad. Sci. USA98, 1871–1876 (2001). CASPubMedPubMed Central Google Scholar
Kurland, C. G. Something for everyone: horizontal gene transfer in evolution. EMBO Rep.1, 92–95 (2000). Argues that HGT is used too frequently to explain evolutionary patterns. CASPubMedPubMed Central Google Scholar
Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature392, 37–41 (1998). Describes the hypothesis that eukaryotes evolved from a symbiosis of an archaeon and a hydrogen-producing bacterium. CASPubMed Google Scholar
Moreira, D. & López-García, P. Symbiosis between methanogenic Archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol.47, 517–530 (1998). CASPubMed Google Scholar
Horiike, T., Hamada, K., Kanaya, S. & Shinozawa, T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol.3, 210–214 (2002). Google Scholar
Poole, A. & Penny, D. Does endosymbiosis explain the origin of the nucleus? Nature Cell Biol.3, E173 (2001). CASPubMed Google Scholar
Rotte, C. & Martin, W. Does endosymbiosis explain the origin of the nucleus? Nature Cell Biol.3, E173 (2001). CASPubMed Google Scholar
von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature412, 433–436 (2001). CASPubMed Google Scholar
Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature417, 63–67 (2002). CASPubMed Google Scholar
Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA99, 1420–1425 (2002). Identifies a core set of proteins that are specific to eukaryotes. CASPubMedPubMed Central Google Scholar
Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet.14, 307–311 (1998). Proposes an influential explanation of how eukaryotic genomes would accumulate bacterial genes through interdomain HGT. CASPubMed Google Scholar
Forterre, P. & Philippe, H. Where is the root of the universal tree of life? BioEssays21, 871–879 (1999). CASPubMed Google Scholar
Gupta, R. H. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol. Mol. Biol. Rev.62, 1435–1491 (1998). CASPubMedPubMed Central Google Scholar
Olsen, G. J. & Woese, C. R. Archaeal genomics — an overview. Cell89, 991–994 (1997). CASPubMed Google Scholar
Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA95, 6239–6244 (1998). CASPubMedPubMed Central Google Scholar
Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA96, 3801–3806 (1999). CASPubMedPubMed Central Google Scholar
Lathe, W. C., Snel, B. & Bork, P. Gene context conservation of a higher order than operons. Trends Biochem. Sci.25, 474–479 (2000). CASPubMed Google Scholar
Brochier, C., Philippe, H. & Moreira, D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet.16, 529–533 (2000). CASPubMed Google Scholar
Brinkman, H. & Philippe, H. Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol.16, 817–825 (1999). Google Scholar
Horner, D. S., Heil, B., Happe, T. & Embley, T. M. Iron hydrogenases — ancient enzymes in modern eukaryotes. Trends Biochem. Sci.27, 148–153 (2002). CASPubMed Google Scholar
Horner, D. S., Hirt, R. P. & Embley, T. M. A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol. Biol. Evol.16, 1280–1291 (1999). CASPubMed Google Scholar
Chihade, J., Brown, J. R., Schimmel, P. & Ribas de Pouplana, L. Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proc. Natl Acad. Sci. USA97, 12153–12157 (2000). CASPubMedPubMed Central Google Scholar
Brown, J. R., Masuchi, Y., Robb, F. T. & Doolittle, W. F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol.38, 566–576 (1994). CASPubMed Google Scholar
Benachenhou-Lahfa, N., Forterre, P. & Labedan, B. Evolution of glutamate dehydrogenase genes: evidence for paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J. Mol. Evol.36, 335–346 (1993). CASPubMed Google Scholar
Forterre, P., Bouthier de la Tour, C., Philippe, H. & Duguet, M. Reverse gyrase from thermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet.16, 152–154 (2000). CASPubMed Google Scholar
Faguy, D. M. & Doolittle, W. F. Horizontal transfer of catalase-peroxidase genes between Archaea and pathogenic bacteria. Trends Genet.16, 196–197 (2000). CASPubMed Google Scholar
Koretke, K. K., Lupas, A. N., Warren, P. V., Rosenberg, M. & Brown, J. R. Evolution of two-component signal transduction. Mol. Biol. Evol.17, 1956–1970 (2000). CASPubMed Google Scholar
Lamour, V. et al. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case for horizontal gene transfer. Proc. Natl Acad. Sci. USA91, 8670–8674 (1994). CASPubMedPubMed Central Google Scholar
Brown, J. R. & Doolittle, W. F. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol.49, 485–495 (1999). CASPubMed Google Scholar
Margulis, L. Origin of Eukaryotic Cells (Yale University Press, New Haven, Connecticut, 1970). Google Scholar
Kurland, C. & Andersson, S. G. E. Origin and evolution of the mitochondrial proteome. Mol. Biol. Rev.64, 786–820 (2000). A detailed perspective on proteobacterial genomes and the evolution of mitochondria. CAS Google Scholar
Clark, C. G. & Roger, A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl Acad. Sci. USA92, 6518–6521 (1995). CASPubMedPubMed Central Google Scholar
Germot, A., Philippe, H. & Le Guyader, H. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Natl Acad. Sci. USA93, 14614–14617 (1996). CASPubMedPubMed Central Google Scholar
Henze, K. A., Badr, A., Wettern, M., Cerff, R. & Martin, W. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc. Natl Acad. Sci. USA92, 9122–9126 (1995). CASPubMedPubMed Central Google Scholar
Keeling, P. J. & Doolittle, W. F. Evidence that eukaryotic triosephosphate isomerase is of α-proteobacterial origin. Proc. Natl Acad. Sci. USA94, 1270–1275 (1997). CASPubMedPubMed Central Google Scholar
Keeling, P. J. & McFadden, G. I. Origins of microsporidia. Trends Microbiol.6, 19–23 (1998). CASPubMed Google Scholar
Roger, A. J., Clark, C. G. & Doolittle, W. F. A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl Acad. Sci. USA93, 14618–14622 (1996). CASPubMedPubMed Central Google Scholar
van der Giezen, M. et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J.21, 572–579 (2002). CASPubMed Google Scholar
Tielens, A. G. M., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them. Trends Biochem. Sci.27, 564–572 (2002). Describes the broad range of mitochondrial metabolic diversity. CASPubMed Google Scholar
Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature396, 133–140 (1998). CASPubMed Google Scholar
Karlberg, O., Canbäck, B., Kurland, C. G. & Andersson, S. G. E. The dual origin of the yeast mitochondrial proteome. Yeast Comp. Funct. Genomics17, 170–187 (2000). An evolutionary analysis of the archaeal and bacterial contributions to the mitochondrial proteome. CAS Google Scholar
Thorsness, P. E. & Fox, T. D. Escape of DNA from mitochondria to nucleus in Saccharomyces cerevisiae. Nature346, 376–379 (1990). CASPubMed Google Scholar
Thorsness, P. E. & Fox, T. D. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics134, 21–28 (1993). CASPubMedPubMed Central Google Scholar
Rujan, T. & Martin, W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet.17, 113–119 (2001). CASPubMed Google Scholar
Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA99, 12246–12251 (2002). An assessment of the potential contribution of the plastid symbiont to the plant nuclear genome. CASPubMedPubMed Central Google Scholar
Palenik, B. The genomics of symbiosis: host keep the baby and the bath water. Proc. Natl Acad. Sci. USA99, 11996–11997 (2002). CASPubMedPubMed Central Google Scholar
Brinkman, F. S. L. et al. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, Cyanobacteria, and the chloroplast. Genome Res.12, 1159–1167 (2002). CASPubMedPubMed Central Google Scholar
Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays21, 99–104 (1999). Discusses the possible impacts on genome evolution of mixing bacterial lineages. CASPubMed Google Scholar
Berg, O. G. & Kurland, C. G. Why mitochondrial genes are most often found in nuclei. Mol. Biol. Evol.17, 951–961 (2000). CASPubMed Google Scholar
Blanchard, J. L. & Lynch, M. Organellar genes: why do they end up in the nucleus? Trends Genet.16, 315–320 (2000). CASPubMed Google Scholar
Canback, B., Andersson, S. G. E. & Kurland, C. G. The global phylogeny of glycolytic enzymes. Proc. Natl Acad. Sci. USA99, 6097–6102 (2002). CASPubMedPubMed Central Google Scholar
Brown, J. R. & Doolittle, W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl Acad. Sci. USA92, 2441–2445 (1995). CASPubMedPubMed Central Google Scholar
Hashimoto, T., Sánchez, L. B., Shirakura, T., Müller, M. & Hasegawa, M. Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc. Natl Acad. Sci. USA95, 6860–6865 (1998). CASPubMedPubMed Central Google Scholar
Deppenmeier, U. et al. The genome of Methanosacrina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol.4, 453–461 (2002). CASPubMed Google Scholar
Wren, B. W. Microbial genome analysis: insight into virulence, host adaptation and evolution. Nature Rev. Genet.1, 30–39 (2000). CASPubMed Google Scholar
Huang, P. & Oliff, A. Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol.11, 343–348 (2001). CASPubMed Google Scholar
Koonin, E. V. & Aravind, L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ.9, 394–404 (2002). CASPubMed Google Scholar
Dehal, P. et. al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science298, 2157–2167 (2002). CASPubMed Google Scholar
Graham, D. E., Overbeek, R., Olsen, G. J. & Woese, C. R. An archaeal genomic signature. Proc. Natl Acad. Sci. USA97, 3304–3308 (2000). CASPubMedPubMed Central Google Scholar
Iwabe, N., Kuma, K. -I., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of Archaea, Bacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA86, 9355–9359 (1989). CASPubMedPubMed Central Google Scholar
Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA86, 6661–6665 (1989). CASPubMedPubMed Central Google Scholar
Olsen, G. J., Woses, C. R. & Overbeek, R. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol.176, 1–6 (1994). Contains a comprehensive ribosomal RNA phylogeny of the Bacteria and Archaea. CASPubMedPubMed Central Google Scholar
Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes the net of life. BioSystems31, 111–119 (1993). CASPubMed Google Scholar
Woese, C. R., Olsen, G. J., Ibba, M. & Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev.64, 202–236 (2000). CASPubMedPubMed Central Google Scholar
Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol.49, 496–508 (1999). CASPubMed Google Scholar
Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl Acad. Sci. USA93, 7749–7754 (1996). CASPubMedPubMed Central Google Scholar
Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of aminoacyl-tRNA synthetases — analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res.9, 689–710 (1999). CASPubMed Google Scholar
Teichmann, S. A. & Mitchison, G. Is there a phylogenetic signal in prokaryote proteins? J. Mol. Evol.49, 98–107 (1999). CASPubMed Google Scholar
Brown, J. R. Genomic and phylogenetic perspectives on the evolution of prokaryotes. Syst. Biol.50, 497–512 (2001). CASPubMed Google Scholar
Boucher, Y. & Doolittle, W. F. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol.37, 703–716 (2000). CASPubMed Google Scholar
Aravind, L., Tatusov, R. L., Wolf, Y. I., Walker, D. R. & Koonin, E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet.14, 442–444 (1998). CASPubMed Google Scholar
Eisen, J. A. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev.10, 606–611 (2000). CASPubMed Google Scholar
Martin, W. Is something wrong with the tree of life? Bioessays18, 523–527 (1996). CAS Google Scholar
Tiboni, O., Cammarano, P. & Sanangelantoni, A. M. Cloning and sequencing the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J. Bacteriol.175, 2961–2969 (1993). CASPubMedPubMed Central Google Scholar
Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Ver. 4 (Sinauer Associates, Sunderland, Massachusetts, 1999).
Felsenstein, J. PHYLIP (Phylogeny Inference Package) Ver. 3, 57c. Distributed by the author: http://evolution.genetics.washington.edu/phylip.html (Department of Genetics, University of Washington, Seattle, 1993).
Page, R. D. M. TREEVIEW: an application to display phylogenetic trees on personal computers. Comp. Appl. Biosci.12, 357–358 (1996). CASPubMed Google Scholar
Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature419, 498–511 (2002). CASPubMed Google Scholar
Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature419, 512–519 (2002). CASPubMed Google Scholar
Baldauf, S. L. & Doolittle, W. F. Origin and evolution of the slime molds (Mycetozoa). Proc. Natl Acad. Sci. USA94, 12007–12012 (1997). CASPubMedPubMed Central Google Scholar