The genetic theory of adaptation: a brief history (original) (raw)
Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930). One of the founding documents of modern evolutionary biology. It includes Fisher's classical discussions of his geometric model of adaptation. Book Google Scholar
Darwin, C. R. The Origin of Species (J. Murray, London, 1859). Google Scholar
Mayr, E. The Growth of Biological Thought (Harvard Univ. Press, Cambridge, Massachusetts, 1982). Google Scholar
Maynard Smith, J. (ed.) Evolution Now: a Century After Darwin (W. H. Freeman and Co., San Francisco, 1982). Google Scholar
Pearson, K. Mathematical contributions to the theory of evolution: on the law of ancestral heredity. Proc. R. Soc. Lond.62, 386–412 (1898). Google Scholar
Weldon, W. F. R. Attempt to measure the death-rate due to the selective destruction of Carcinus moenas with respect to a particular dimension. Proc. R. Soc. Lond.58, 360–379 (1895). Google Scholar
Provine, W. B. The Origins of Theoretical Population Genetics (Univ. Chicago Press, Chicago, 1971). Google Scholar
Morgan, T. H. Evolution and Adaptation (Macmillan, New York, 1903). Google Scholar
Bateson, W. Mendel's Principles of Genetics (Cambridge Univ. Press, Cambridge, 1913). Google Scholar
Punnett, R. C. Mimicry in Butterflies (Cambridge Univ. Press, Cambridge, 1915). Google Scholar
Turner, J. R. G. Fisher's evolutionary faith and the challenge of mimicry. Oxford Surv. Evol. Biol.2, 159–196 (1985). Google Scholar
Bateson, W. in Darwin and Modern Science (ed. Seward, A. C.) 85–101 (Cambridge Univ. Press, Cambridge, 1909). Google Scholar
Fisher, R. A. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb.52, 399–433 (1918). Google Scholar
Bulmer, M. G. The Mathematical Theory of Quantitative Genetics (Oxford Univ. Press, Oxford, 1980). Google Scholar
Barton, N. H. & Turelli, M. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genetics23, 337–370 (1989). CAS Google Scholar
Turner, J. R. G. in The Probabilistic Revolution Vol. 2 (eds. Kruger, L., Gigerenzer, G. & Morgan, M. S.) 313–354 (The MIT Press, Cambridge, Massachusetts, 1987). Google Scholar
Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, New York, 1937). Google Scholar
Muller, H. J. Eugenics, Genetics and the Family: Proceedings of the Second International Congress of Eugenics Vol. 1 (ed. History, A. M.) (William and Wilkens, Baltimore, 1923). Google Scholar
Muller, H. J. in The New Systematics (ed. Huxley, J. S.) 185–268 (Clarendon Press, Oxford, 1940). Google Scholar
Muller H. J. The Darwinian and modern conceptions of natural selection. Proc. Am. Phil. Soc.93, 459–470 (1949). CAS Google Scholar
Mather, K. Polygenic inheritance and natural selection. Biol. Rev.18, 32–64 (1943). Google Scholar
Mather, K. Biometrical Genetics (Dover, New York, 1949). Google Scholar
Huxley, J. Evolution as a Process (Unwin Bros, Woking; London, 1954). Google Scholar
Huxley, J. Evolution, the Modern Synthesis (George Allen & Unwin, London, 1942). Google Scholar
Orr, H. A. & Coyne, J. A. The genetics of adaptation revisited. Am. Nat.140, 725–742 (1992). CASPubMed Google Scholar
Tanksley, S. D. Mapping polygenes. Annu. Rev. Genet.27, 205–233 (1993). CASPubMed Google Scholar
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, Harlow, England, 1996). Google Scholar
Kearsey, M. J. & Farquhar, G. L. QTL analysis in plants; where are we now? Heredity80, 137–142 (1998). PubMed Google Scholar
Orr, H. A. The genetics of species differences. Trends Ecol. Evol.16, 343–350 (2001). Google Scholar
Mackay, T. F. C. Quantitative trait loci in Drosophila. Nature Rev. Genet.2, 11–20 (2001). CASPubMed Google Scholar
Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J. Different trajectories of parallel evolution during viral adaptation. Science285, 422–424 (1999). CASPubMed Google Scholar
Riehle, M. M., Bennett, A. F. & Long, A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl Acad. Sci. USA98, 525–530 (2001). CASPubMedPubMed Central Google Scholar
Anderson, J. et al. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics163, 1287–1298 (2003). CASPubMedPubMed Central Google Scholar
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983). Google Scholar
Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution52, 935–949 (1998). A theoretical study of the genetic basis of phenotypic evolution using Fisher's geometric model of adaptation. This study argues that previous claims about adaptation based on Fisher's model were partly mistaken. PubMed Google Scholar
Orr, H. A. The evolutionary genetics of adaptation: a simulation study. Genet. Res.74, 207–214 (1999). CASPubMed Google Scholar
Barton, N. The geometry of natural selection. Nature395, 751–752 (1998). CASPubMed Google Scholar
Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet.3, 11–21 (2002). CASPubMed Google Scholar
Peck, J. R., Barreau, G. & Heath, S. C. Imperfect genes, Fisherian mutation and the evolution of sex. Genetics145, 1171–1199 (1997). CASPubMedPubMed Central Google Scholar
Rice, S. A geometric model for the evolution of development. J. Theor. Biol.143, 319–342 (1990). Google Scholar
Hartl, D. & Taubes, C. H. Compensatory nearly neutral mutations: selection without adaptation. J. Theor. Biol.182, 303–309 (1996). CASPubMed Google Scholar
Hartl, D. L. & Taubes, C. H. Towards a theory of evolutionary adaptation. Genetica102/103, 525–533 (1998). Google Scholar
Poon, A. & Otto, S. P. Compensating for our load of mutations: freezing the meltdown of small populations. Evolution54, 1467–1479 (2000). CASPubMed Google Scholar
Barton, N. H. The role of hybridization in evolution. Mol. Ecol.10, 551–568 (2001). CASPubMed Google Scholar
Orr, H. A. Adaptation and the cost of complexity. Evolution54, 13–20 (2000). CASPubMed Google Scholar
Welch, J. J. & Waxman, D. Modularity and the cost of complexity. Evolution57, 1723–1734 (2003). PubMed Google Scholar
Maynard Smith, J. The Scientist Speculates: an Anthology of Partly-Baked Ideas (ed. Good, I. J.) 252–256 (Basic Books, New York, 1962). This introduced the idea of adaptation through a 'sequence space'. Although Maynard Smith considered protein spaces, his ideas had a key role in later thinking about adaptative walks through DNA sequence spaces. Google Scholar
Maynard Smith, J. Natural selection and the concept of a protein space. Nature225, 563–564 (1970). Google Scholar
Kimura, M. Evolutionary rate at the molecular level. Nature217, 624–626 (1968). CASPubMed Google Scholar
King, J. L. & Jukes, T. H. Non-Darwinian evolution: random fixation of selectively neutral mutations. Science164, 788–798 (1969). CASPubMed Google Scholar
Ohta, T. Molecular Evolution and Polymorphism (ed. Kimura, M.) 148–167 (Natl Inst. Genet., Mishima, 1977). Google Scholar
Kimura, M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl Acad. Sci. USA76, 3440–3444 (1979). CASPubMedPubMed Central Google Scholar
Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst.23, 263–286 (1992). Google Scholar
Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist program. Proc. R. Soc. Lond. B205, 581–598 (1979). CASPubMed Google Scholar
Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol.128, 11–45 (1987). This paper introduced the idea of adaptation over fitness landscapes of varying ruggedness. Although it largely focused on 'random' landscapes, the paper gave rise to a large literature on landscapes of different ruggedness. CASPubMed Google Scholar
Kauffman, S. A., Weinberger, E. D. & Perelson, A. S. in Theoretical Immunology: Part One (ed. Perelson, A. S.) 349–382 (Addison-Wesley, New York, 1988). Google Scholar
Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993). Google Scholar
Weinberger, E. A more rigorous derivation of some properties of uncorrelated fitness landscapes. J. Theor. Biol.134, 125–129 (1988). Google Scholar
Weinberger, E. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern.63, 325–336 (1990). Google Scholar
Weinberger, E. D. Local properties of Kauffman's N-k model: a tunably rugged energy landscape. Phys. Rev. A44, 6399–6413 (1991). CASPubMed Google Scholar
Macken, C. A. & Perelson, A. S. Protein evolution on rugged landscapes. Proc. Natl Acad. Sci. USA86, 6191–6195 (1989). CASPubMedPubMed Central Google Scholar
Macken, C. A., Hagan, P. S. & Perelson, A. S. Evolutionary walks on rugged landscapes. SIAM J. Appl. Math.51, 799–827 (1991). Google Scholar
Flyvbjerg, H. & Lautrup, B. Evolution in a rugged fitness landscape. Phys. Rev. A46, 6714–6723 (1992). CASPubMed Google Scholar
Fontana, W. et al. RNA folding and combinatory landscapes. Phys. Rev. E47, 2083–2099 (1993). CAS Google Scholar
Stadler, P. F. & Happel, R. Random field models for fitness landscapes. J. Math. Biol.38, 435–478 (1999). Google Scholar
Macken, C. A. & Stadler, P. F. in 1993 Lectures in Complex Systems (eds Nadel, L. & Stein, D. L.) 43–86 (Addison-Wesley, Reading, Massachusetts, 1995). Google Scholar
Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth Intl Cong. Genet.1, 356–366 (1932). Google Scholar
Gavrilets, S. Fitness Landscapes and the Origin of Species (Princeton Univ. Press, Princeton, 2004). Google Scholar
Perelson, A. S. & Macken, C. A. Protein evolution on partially correlated landscapes. Proc. Natl Acad. Sci. USA92, 9657–9661 (1995). CASPubMedPubMed Central Google Scholar
Anderson, P. W. in Emerging Synthesis in Science: Proceedings of the Founding Workshop of the Santa Fe Institute (ed. Pines, D.) (Santa Fe Inst., Santa Fe, 1985). Google Scholar
Gillespie, J. H. A simple stochastic gene substitution model. Theor. Popul. Biol.23, 202–215 (1983). CASPubMed Google Scholar
Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution38, 1116–1129 (1984). This is Gillespie's most extensive discussion of the use of extreme value theory in the study of molecular evolution. CASPubMed Google Scholar
Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991). Google Scholar
Gumbel, E. J. Statistics of Extremes (Columbia Univ. Press, New York, 1958). Google Scholar
Leadbetter, M. R., Lindgren, G. & Rootzen, H. Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983). Google Scholar
Embrechts, P. (ed.) Extremes and Integrated Risk Management (Risk Books, London, 2000). Google Scholar
Stadler, P. F. Biological Evolution and Statistical Physics (eds Lassig, M. & Valleriani, A.) 183–204 (Springer, Berlin, 2002). Google Scholar
Glick, N. Breaking records and breaking boards. Am. Math. Monthly85, 2–26 (1978). Google Scholar
Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N. Records (John Wiley and Sons, New York, 1998). Google Scholar
Gillespie, J. H. Is the population size of a species relevant to its evolution? Evolution55, 2161–2169 (2003). Google Scholar
Gillespie, J. H. Natural selection and the molecular clock. Mol. Biol. Evol.3, 138–155 (1986). CASPubMed Google Scholar
Gillespie, J. H. Molecular evolution and the neutral allele theory. Oxford Surv. Evol. Biol.4, 10–37 (1989). Google Scholar
Gerrish, P. The rhythm of microbial adaptation. Nature413, 299–302 (2001). CASPubMed Google Scholar
Rozen, D. E., de Visser, J. A. G. M. & Gerrish, P. J. Fitness effects of fixed benefical mutations in microbial populations. Curr. Biol.12, 1040–1045 (2002). CASPubMed Google Scholar
Orr, H. A. The population genetics of adaptation: the adaptation of DNA sequences. Evolution56, 1317–1330 (2002). This paper brought the extreme value theory to bear on several key questions in the study of DNA sequence adaptation. CASPubMed Google Scholar
Orr, H. A. The probability of parallel adaptation. Evolution (in the press).
Orr, H. A. Theories of adaptation: what they do and don't say. Genetica (in the press).
Imhof, M. & Schlotterer, C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl Acad. Sci. USA98, 1113–1117 (2001). CASPubMedPubMed Central Google Scholar
Sanjuan, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA101, 8396–8401 (2004). CASPubMedPubMed Central Google Scholar
Liu, J. et al. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics142, 1129–1145 (1996). CASPubMedPubMed Central Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection: a Complete Variorum Edition (Oxford Univ. Press, Oxford, 2000). Google Scholar
Colosimo, P. F. et al. The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol.2, e109 (2004). PubMedPubMed Central Google Scholar
Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA101, 6050–6055 (2004). CASPubMedPubMed Central Google Scholar
Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature428, 717–723 (2004). Experimental analysis that identified a candidate gene,Pitx1, that has an important role in the morphological adaptation of marine sticklebacks to lake environments. CASPubMed Google Scholar
Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by _cis_-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci. USA97, 4530–4534 (2000). CASPubMedPubMed Central Google Scholar
White, S. & Doebley, J. Of genes and genomes and the origin of maize. Trends Genet.14, 327–332 (1998). CASPubMed Google Scholar
Wang, R. -L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature398, 236–239 (1999). CASPubMed Google Scholar
Doebley, J. The genetics of maize evolution. Annu. Rev. Genet.38, 37–59 (2004). A comprehensive and up-to-date review of Doebley's classical studies of the genetic basis of maize domestication. CASPubMed Google Scholar
Bradshaw, H. D., Wilbert, S. M., Otto, K. G. & Schemske, D. W. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature376, 762–765 (1995). CAS Google Scholar
Bradshaw, H. D., Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of Monkeyflower (Mimulus). Genetics149, 367–382 (1998). An early and important QTL analysis that implicates the major genes in the natural adaptation of plant species to their pollinators. CASPubMedPubMed Central Google Scholar
Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature426, 176–178 (2003). CASPubMed Google Scholar
Leigh, E. G. Ronald Fisher and the development of evolutionary theory. II. Influences of new variation on evolutionary process. Oxford Surv. Evol. Biol.4, 212–264 (1987). Google Scholar
Otto, S. P. & Jones, C. D. Detecting the undetected: estimating the total number of loci underlying a trait in QTL analyses. Genetics156, 2093–2107 (2000). CASPubMedPubMed Central Google Scholar
David, H. A. Order Statistics (John Wiley and Sons, New York, 1970). Google Scholar
Weissman, I. Estimation of parameters and large quantiles based on the _k_th largest observations. J. Am. Stat. Assoc.73, 812–815 (1978). Google Scholar
Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates Inc., Sunderland, Massachusetts, 2004). Google Scholar