Environmental epigenomics and disease susceptibility (original) (raw)
Yajnik, C. S. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J. Nutr.134, 205–210 (2004). ArticleCASPubMed Google Scholar
Barker, D. J. The developmental origins of chronic adult disease. Acta Paediatr. Suppl.93, 26–33 (2004). ArticleCASPubMed Google Scholar
Painter, R. C., Roseboom, T. J. & Bleker, O. P. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod. Toxicol.20, 345–352 (2005). ArticleCASPubMed Google Scholar
Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am. J. Hum. Biol.19, 1–19 (2007). References 1–4 discuss evidence for the early origins of the adult disease susceptibility hypothesis. ArticlePubMed Google Scholar
St Clair, D. et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA294, 557–562 (2005). ArticleCASPubMed Google Scholar
van Os, J. & Selten, J. P. Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br. J. Psychiatry172, 324–326 (1998). References 5 and 6 discuss epidemiological evidence that the adult incidence of schizophrenia is significantly increased in humans who were exposed prenatally to famine conditions. ArticleCASPubMed Google Scholar
Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Rev. Genet.3, 662–673 (2002). ArticleCASPubMed Google Scholar
Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31, 89–97 (2006). ArticleCASPubMed Google Scholar
Talbert, P. B. & Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nature Rev. Genet.7, 793–803 (2006). ArticleCASPubMed Google Scholar
Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet.7, 395–401 (2006). ArticleCASPubMed Google Scholar
Thorvaldsen, J. L., Verona, R. I. & Bartolomei, M. S. X-tra! X-tra! News from the mouse X chromosome. Dev. Biol.298, 344–353 (2006). ArticleCASPubMed Google Scholar
Huynh, K. D. & Lee, J. T. X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny. Nature Rev. Genet.6, 410–418 (2005). ArticleCASPubMed Google Scholar
Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet.2, 21–32 (2001). ArticleCASPubMed Google Scholar
Falls, J. G., Pulford, D. J., Wylie, A. A. & Jirtle, R. L. Genomic imprinting: implications for human disease. Am. J. Pathol.154, 635–647 (1999). ArticleCASPubMedPubMed Central Google Scholar
Murphy, S. K. & Jirtle, R. L. Imprinting evolution and the price of silence. BioEssays25, 577–588 (2003). ArticleCASPubMed Google Scholar
Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet.8, 272–285 (2007). ArticleCASPubMed Google Scholar
Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J.12, 949–957 (1998). ArticleCASPubMed Google Scholar
Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23, 5293–5300 (2003). This study demonstrates that maternal methyl donor supplementation during gestation can alter offspring phenotype by methylating the epigenome. ArticleCASPubMedPubMed Central Google Scholar
Dolinoy, D. C., Weidman, J. R., Waterland, R. A. & Jirtle, R. L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect.114, 567–572 (2006). ArticleCASPubMedPubMed Central Google Scholar
Waterland, R. A. et al. Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis44, 401–406 (2006). ArticleCASPubMed Google Scholar
Waterland, R. A., Lin, J. R., Smith, C. A. & Jirtle, R. L. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (IGF2) locus. Hum. Mol. Genet.15, 705–716 (2006). ArticleCASPubMed Google Scholar
Li, S. et al. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol. Carcinog.38, 78–84 (2003). ArticleCASPubMed Google Scholar
Ho, S. M., Tang, W. Y., Belmonte de Frausto, J. & Prins, G. S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res.66, 5624–5632 (2006). ArticleCASPubMedPubMed Central Google Scholar
Anway, M. D. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology147, S43–S49 (2006). ArticleCASPubMed Google Scholar
Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nature Neurosci.7, 847–854 (2004). ArticleCASPubMed Google Scholar
Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci.25, 11045–11054 (2005). ArticleCASPubMedPubMed Central Google Scholar
Niemitz, E. L. & Feinberg, A. P. Epigenetics and assisted reproductive technology: a call for investigation. Am. J. Hum. Genet.74, 599–609 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rossignol, S. et al. The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J. Med. Genet.43, 902–907 (2006). ArticleCASPubMedPubMed Central Google Scholar
Koturbash, I. et al. Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int. J. Radiat. Oncol. Biol. Phys.66, 327–330 (2006). ArticleCASPubMed Google Scholar
Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet.23, 314–318 (1999). This study demonstrates the maternal inheritance of an epigenetic modification at the agouti locus in mice. ArticleCASPubMed Google Scholar
Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis35, 88–93 (2003). ArticleCASPubMed Google Scholar
Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA100, 2538–2543 (2003). ArticleCASPubMedPubMed Central Google Scholar
Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science308, 1466–1469 (2005). This study demonstrates the ability of environmental factors to induce an epigenetic transgenerational disease phenotype for four generations. ArticleCASPubMed Google Scholar
Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet.14, 159–166 (2006). This study demonstrates an inherited disease phenotype in humans that is potentially induced by an epigenetic phenomena. ArticlePubMed Google Scholar
Vasicek, T. J. et al. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics147, 777–786 (1997). CASPubMedPubMed Central Google Scholar
Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nature Genet.36, 497–501 (2004). ArticleCASPubMed Google Scholar
Chan, T. L. et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nature Genet.38, 1178–1183 (2006). ArticleCASPubMed Google Scholar
Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Rev. Drug Discov.5, 37–50 (2006). ArticleCAS Google Scholar
Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer — a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer6, 107–116 (2006). ArticleCAS Google Scholar
Duhl, D. M., Vrieling, H., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic agouti mutations in obese yellow mice. Nature Genet.8, 59–65 (1994). These authors show that theAvyallele results from the insertion of an intracisternal A particle upstream of the agouti gene. ArticleCASPubMed Google Scholar
Druker, R., Bruxner, T. J., Lehrbach, N. J. & Whitelaw, E. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucl. Acids Res.32, 5800–5808 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable epialleles in mammals. Trends Genet.18, 348–351 (2002). ArticleCASPubMed Google Scholar
Druker, R. & Whitelaw, E. Retrotransposon-derived elements in the mammalian genome: a potential source of disease. Inherit. Metab. Dis.27, 319–330 (2004). ArticleCAS Google Scholar
Miltenberger, R. J., Mynatt, R. L., Wilkinson, J. E. & Woychik, R. P. The role of the agouti gene in the Yellow Obese Syndrome. J. Nutr.127, 1902S–1907S (1997). ArticleCASPubMed Google Scholar
Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr.132, 2393S–2400S (2002). ArticleCASPubMed Google Scholar
Cropley, J. E., Suter, C. M., Beckman, K. B. & Martin, D. I. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA103, 17308–17312 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haig, D. & Graham, C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell64, 1045–1046 (1991). These authors propose that genomic imprinting evolved because of a parental genetic battle to control the amount of nutrients that is extracted from the mother by the offspring. ArticleCASPubMed Google Scholar
Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet.4, 359–368 (2003). ArticleCASPubMed Google Scholar
DeChiara, T. M., Robertson, E. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell64, 849–859 (1991). ArticleCASPubMed Google Scholar
Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature349, 84–87 (1991). References 51 and 52 report the first-identified imprinted genes. ArticleCASPubMed Google Scholar
Killian, J. K. et al. M6p/IGF2R imprinting evolution in mammals. Mol. Cell5, 707–716 (2000). This paper demonstrates that genomic imprinting evolved approximately 180 million years ago with the advent of live birth in therian mammals. ArticleCASPubMed Google Scholar
Evans, H. K., Weidman, J. R., Cowley, D. O. & Jirtle, R. L. Comparative phylogenetic analysis of Blcap/Nnat reveals eutherian-specific imprinted gene. Mol. Biol. Evol.22, 1740–1748 (2005). ArticleCASPubMed Google Scholar
Weidman, J. R., Maloney, K. A. & Jirtle, R. L. Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum DLK1. Mamm. Genome17, 157–167 (2006). ArticleCASPubMed Google Scholar
Suzuki, S. et al. Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mech. Dev.122, 213–222 (2005). ArticleCASPubMed Google Scholar
Killian, J. K. et al. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum. Mol. Genet.10, 1721–1728 (2001). ArticleCASPubMed Google Scholar
De Souza, A. T., Hankins, G. R., Washington, M. K., Orton, T. C. & Jirtle, R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet.11, 447–449 (1995). ArticleCASPubMed Google Scholar
Weksberg, R., Shuman, C. & Smith, A. C. Beckwith–Wiedemann syndrome. Am. J. Med. Genet. C Semin. Med. Genet.137, 12–23 (2005). Article Google Scholar
Kantor, B., Shemer, R. & Razin, A. The Prader-Willi–Angelman imprinted domain and its control center. Cytogenet. Genome Res.113, 300–305 (2006). ArticleCASPubMed Google Scholar
Badcock, C. & Crespi, B. Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J. Evol. Biol.19, 1007–1032 (2006). These authors propose that human neurological disorders, such as autism, result from an imbalanced expression of imprinted genes during development. ArticleCASPubMed Google Scholar
Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. Trends Genet.21, 457–465 (2005). ArticleCASPubMed Google Scholar
Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet.7, 21–33 (2006). ArticleCASPubMed Google Scholar
Feinberg, A. P. A genetic approach to cancer epigenetics. Cold Spring Harb. Symp. Quant. Biol.70, 335–341 (2005). ArticleCASPubMed Google Scholar
Knudson, A. G. Two genetic hits (more or less) to cancer. Nature Rev. Cancer1, 157–162 (2001). ArticleCAS Google Scholar
Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science299, 1753–1755 (2003). This paper reports that some humans haveIGF2LOI in peripheral lymphocytes, which is correlated with biallelic expression in normal colonic mucosa and a personal history of colorectal cancer. ArticleCASPubMed Google Scholar
Cruz-Correa, M. et al. Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology126, 964–970 (2004). ArticleCASPubMed Google Scholar
Jirtle, R. L. IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer. Gastroenterology126, 1190–1193 (2004). ArticleCASPubMed Google Scholar
Oates, N. A. et al. Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am. J. Hum. Genet.79, 155–162 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, M., Tamura, M., Yamashita, J., Suzuki, C. & Tomita, T. Repeated in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure affects male gonads in offspring, leading to sex ratio changes in F2 progeny. Toxicol. Appl. Pharmacol.206, 351–355 (2005). ArticleCASPubMed Google Scholar
Blatt, J., Van Le, L., Weiner, T. & Sailer, S. Ovarian carcinoma in an adolescent with transgenerational exposure to diethylstilbestrol. J. Pediatr. Hematol. Oncol.25, 635–636 (2003). ArticlePubMed Google Scholar
Dubrova, Y. E. Radiation-induced transgenerational instability. Oncogene22, 7087–7093 (2003). ArticleCASPubMed Google Scholar
Cheng, R. Y., Hockman, T., Crawford, E., Anderson, L. M. & Shiao, Y. H. Epigenetic and gene expression changes related to transgenerational carcinogenesis. Mol. Carcinog.40, 1–11 (2004). ArticleCASPubMed Google Scholar
Hemmings, D. G., Veerareddy, S., Baker, P. N. & Davidge, S. T. Increased myogenic responses in uterine but not mesenteric arteries from pregnant offspring of diet-restricted rat dams. Biol. Reprod.72, 997–1003 (2005). ArticleCASPubMed Google Scholar
Ferguson, L. R., Karunasinghe, N. & Philpott, M. Epigenetic events and protection from colon cancer in New Zealand. Environ. Mol. Mutagen.44, 36–43 (2004). ArticleCASPubMed Google Scholar
Csaba, G. & Karabelyos, C. Transgenerational effect of a single neonatal benzpyrene treatment (imprinting) on the sexual behavior of adult female rats. Hum. Exp. Toxicol.16, 553–556 (1997). ArticleCASPubMed Google Scholar
Fujii, T. Transgenerational effects of maternal exposure to chemicals on the functional development of the brain in the offspring. Cancer Causes Control8, 524–528 (1997). ArticleCASPubMed Google Scholar
Brucker-Davis, F. Effects of environmental synthetic chemicals on thyroid function. Thyroid8, 827–856 (1998). ArticleCASPubMed Google Scholar
Giusti, R. M., Iwamoto, K. & Hatch, E. E. Diethylstilbestrol revisited: a review of the long-term health effects. Ann. Intern. Med.122, 778–788 (1995). ArticleCASPubMed Google Scholar
Klip, H. et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet359, 1102–1107 (2002). ArticleCASPubMed Google Scholar
Parks, L. G. et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci.58, 339–349 (2000). ArticleCASPubMed Google Scholar
Steinhardt, G. F. Endocrine disruption and hypospadias. Adv. Exp. Med. Biol.545, 203–215 (2004). ArticlePubMed Google Scholar
Ruden, D. M., Xiao, L., Garfinkel, M. D. & Lu, X. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum. Mol. Genet.14, R149–R155 (2005).
Matta, M. B., Linse, J., Cairncross, C., Francendese, L. & Kocan, R. M. Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on Fundulus heteroclitus. Environ. Toxicol. Chem.20, 327–335 (2001). ArticleCASPubMed Google Scholar
Omholt, S. W. & Amdam, G. V. Epigenetic regulation of aging in honeybee workers. Sci. Aging Knowledge Environ.2004, pe28 (2004).
Ottinger, M. A. et al. Assessing the consequences of the pesticide methoxychlor: neuroendocrine and behavioral measures as indicators of biological impact of an estrogenic environmental chemical. Brain Res. Bull.65, 199–209 (2005). ArticleCASPubMed Google Scholar
Seidl, M. D., Paul, R. J. & Pirow, R. Effects of hypoxia acclimation on morpho-physiological traits over three generations of Daphnia magna. J. Exp. Biol.208, 2165–2175 (2005). ArticleCASPubMed Google Scholar
Foran, C. M., Peterson, B. N. & Benson, W. H. Transgenerational and developmental exposure of Japanese medaka (Oryzias latipes) to ethinylestradiol results in endocrine and reproductive differences in the response to ethinylestradiol as adults. Toxicol. Sci.68, 389–402 (2002). ArticleCASPubMed Google Scholar
Anderson, C. M., Lopez, F., Zimmer, A. & Benoit, J. N. Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague–Dawley rat offspring. Biol. Reprod.74, 538–544 (2006). ArticleCASPubMed Google Scholar
Csaba, G. & Inczefi-Gonda, A. Transgenerational effect of a single neonatal benzpyrene treatment on the glucocorticoid receptor of the rat thymus. Hum. Exp. Toxicol.17, 88–92 (1998). ArticleCASPubMed Google Scholar
Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology147, S11–S17 (2006). ArticleCASPubMed Google Scholar
Popova, N. V. Transgenerational effect of orthoaminoasotoluol in mice. Cancer Lett.46, 203–206 (1989). ArticleCASPubMed Google Scholar
Zambrano, E. et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J. Physiol.566, 225–236 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cesani, M. F. et al. Effect of undernutrition on the cranial growth of the rat. An intergenerational study. Cells Tissues Organs174, 129–135 (2003). ArticlePubMed Google Scholar
Turusov, V. S., Nikonova, T. V. & Parfenov, Y. Increased multiplicity of lung adenomas in five generations of mice treated with benz(a)pyrene when pregnant. Cancer Lett.55, 227–231 (1990). ArticleCASPubMed Google Scholar
Anway, M. D., Leathers, C. & Skinner, M. K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology147, 5515–5523 (2006). ArticleCASPubMed Google Scholar
Chang, H. S., Anway, M. D., Rekow, S. S. & Skinner, M. K. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology147, 5524–5541 (2006). This report demonstrates the ability of vinclozolin to induce the reprogramming of the germ line, and the formation of genes and DNA sequences that contain paternal-allele alterations in DNA methylation associated with transgenerational disease. ArticleCASPubMed Google Scholar
Durcova-Hills, G. et al. Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc. Natl Acad. Sci. USA103, 11184–11188 (2006). ArticleCASPubMedPubMed Central Google Scholar
Forum, T. C. News and Information. J. Radiol. Prot.25, 499–502 (2005). Article Google Scholar
Allegrucci, C., Thurston, A., Lucas, E. & Young, L. Epigenetics and the germline. Reproduction129, 137–149 (2005). ArticleCASPubMed Google Scholar
McCarrey, J. R., Geyer, C. B. & Yoshioka, H. Epigenetic regulation of testis-specific gene expression. Ann. NY Acad. Sci.1061, 226–242 (2005). ArticleCASPubMed Google Scholar
Trasler, J. M. Origin and roles of genomic methylation patterns in male germ cells. Semin. Cell Dev. Biol.9, 467–474 (1998). ArticleCASPubMed Google Scholar
Weaver, I. C., Meaney, M. J. & Szyf, M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl Acad. Sci. USA103, 3480–3485 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hurst, G. D. & Werren, J. H. The role of selfish genetic elements in eukaryotic evolution. Nature Rev. Genet.2, 597–606 (2001). ArticleCASPubMed Google Scholar
Bestor, T. H. Cytosine methylation mediates sexual conflict. Trends Genet.19, 185–190 (2003). ArticleCASPubMed Google Scholar
Luedi, P. P., Hartemink, A. J. & Jirtle, R. L. Genome-wide prediction of imprinted murine genes. Genome Res.15, 875–884 (2005). These authors demonstrate that imprinted genes and their parental expression bias can be predicted genome-wide with the use of machine learning algorithms. ArticleCASPubMedPubMed Central Google Scholar
Waddington, C. H. Organisers and Genes (Cambridge Univ. Press, Cambridge, 1940). Google Scholar
Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science187, 226–232 (1975). ArticleCASPubMed Google Scholar
Willard, H. F., Brown, C. J., Carrel, L., Hendrich, B. & Miller, A. P. Epigenetic and chromosomal control of gene expression: molecular and genetic analysis of X chromosome inactivation. Cold Spring Harb. Symp. Quant. Biol.58, 315–322 (1993). ArticleCASPubMed Google Scholar
Vu, T. H., Jirtle, R. L. & Hoffman, A. R. Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet. Genome Res.113, 202–208 (2006). ArticleCASPubMed Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–552 (2000). ArticleCASPubMed Google Scholar