Human aneuploidy: mechanisms and new insights into an age-old problem (original) (raw)
Lejeune, J., Turpin, R. & Gautier, M. Mongolism; a chromosomal disease (trisomy). Bull. Acad. Natl Med.143, 256–265 (1959). CASPubMed Google Scholar
Jacobs, P. A., Baikie, A. G., Court Brown, W. M. & Strong, J. A. The somatic chromosomes in mongolism. Lancet1, 710 (1959). ArticleCASPubMed Google Scholar
Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet.2, 280–291 (2001). ArticleCASPubMed Google Scholar
Gaulden, M. E. Maternal age effect: the enigma of Down syndrome and other trisomic conditions. Mutat. Res.296, 69–88 (1992). ArticleCASPubMed Google Scholar
Jacobs, P. A. The chromosome complement of human gametes. Oxf. Rev. Reprod. Biol.14, 47–72 (1992). CASPubMed Google Scholar
Jamieson, M. E., Coutts, J. R. & Connor, J. M. The chromosome constitution of human preimplantation embryos fertilized in vitro. Hum. Reprod.9, 709–715 (1994). ArticleCASPubMed Google Scholar
Pellestor, F., Andreo, B., Anahory, T. & Hamamah, S. The occurrence of aneuploidy in human: lessons from the cytogenetic studies of human oocytes. Eur. J. Med. Genet.49, 103–116 (2006). ArticlePubMed Google Scholar
Pacchierotti, F., Adler, I. D., Eichenlaub-Ritter, U. & Mailhes, J. B. Gender effects on the incidence of aneuploidy in mammalian germ cells. Environ. Res.104, 46–69 (2007). ArticleCASPubMed Google Scholar
Fragouli, E. et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum. Reprod.23, 2596–2608 (2008). ArticleCASPubMed Google Scholar
Fragouli, E. et al. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol. Hum. Reprod.17, 286–295 (2011). ArticlePubMed Google Scholar
Gabriel, A. S. et al. Array comparative genomic hybridisation on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J. Med. Genet.48, 433–437 (2011). ArticleCASPubMed Google Scholar
Gutierrez-Mateo, C. et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil. Steril.95, 953–958 (2011). ArticleCASPubMed Google Scholar
Treff, N. R. et al. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil. Steril.95, 1606–1612.e2 (2011). ArticleCASPubMed Google Scholar
Treff, N. R. et al. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol. Hum. Reprod.16, 583–589 (2010). ArticleCASPubMedPubMed Central Google Scholar
Geraedts, J. et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum. Reprod.26, 3173–3180 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lamb, N. E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nature Genet.14, 400–405 (1996). ArticleCASPubMed Google Scholar
Lynn, A. et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science296, 2222–2225 (2002). ArticleCASPubMed Google Scholar
Cheng, E. Y. et al. Meiotic recombination in human oocytes. PLoS Genet.5, e1000661 (2009). This is a study of human fetal oocytes that provides evidence that recombination errors occurring during fetal development set the stage for nondisjunction in the adult. ArticlePubMedPubMed CentralCAS Google Scholar
Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science327, 836–840 (2010). ArticleCASPubMed Google Scholar
Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science319, 1398–1401 (2008). ArticleCASPubMed Google Scholar
Lynn, A., Ashley, T. & Hassold, T. Variation in human meiotic recombination. Annu. Rev. Genom. Hum. Genet. 5, 317–349 (2004).
O'Connell, M. J., Walworth, N. C. & Carr, A. M. The G2-phase DNA-damage checkpoint. Trends Cell Biol.10, 296–303 (2000). ArticleCASPubMed Google Scholar
Hochwagen, A. & Amon, A. Checking your breaks: surveillance mechanisms of meiotic recombination. Curr. Biol.16, R217–R228 (2006). ArticleCASPubMed Google Scholar
Li, X. C. & Schimenti, J. C. Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet.3, e130 (2007). ArticlePubMedPubMed Central Google Scholar
Kuznetsov, S. et al. RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. J. Cell Biol.176, 581–592 (2007). ArticleCASPubMedPubMed Central Google Scholar
Herran, Y. et al. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J.30, 3091–3105 (2011). ArticleCASPubMedPubMed Central Google Scholar
McKee, B. D. & Handel, M. A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma102, 71–80 (1993). ArticleCASPubMed Google Scholar
Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. The consequences of asynapsis for mammalian meiosis. Nature Rev. Genet.10, 207–216 (2009). This is an informative Review of the meiotic consequences of synaptic defects that emphasizes the mechanisms and consequences of transcriptional silencing of unsynapsed regions. ArticleCASPubMed Google Scholar
Cloutier, J. M. & Turner, J. M. Meiotic sex chromosome inactivation. Curr. Biol.20, R962–963 (2010). ArticleCASPubMed Google Scholar
Baarends, W. M. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol.25, 1041–1053 (2005). ArticleCASPubMedPubMed Central Google Scholar
Turner, J. M. et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nature Genet.37, 41–47 (2005). ArticleCASPubMed Google Scholar
Mahadevaiah, S. K. et al. Extensive meiotic asynapsis in mice antagonizes meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J. Cell Biol.182, 263–276 (2008). ArticleCASPubMedPubMed Central Google Scholar
Royo, H. et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol.20, 2117–2123 (2010). ArticleCASPubMed Google Scholar
Homolka, D., Jansa, P. & Forejt, J. Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure. Chromosoma121, 91–104 (2011). ArticlePubMedPubMed Central Google Scholar
Burgoyne, P. S. & Baker, T. G. Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women. J. Reprod. Fertil.75, 633–645 (1985). ArticleCASPubMed Google Scholar
de Boer, P. & de Jong, J. H. in Fertility and Chromosome Pairing: Recent Studies in Plants and Animals (ed. Gilles, C. B.) 77–107 (CRC Press, 1989). Google Scholar
Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell6, 989–998 (2000). ArticleCASPubMed Google Scholar
Hunt, P. & Hassold, T. Female meiosis: coming unglued with age. Curr. Biol.20, R699–702 (2010). ArticleCASPubMed Google Scholar
Henderson, S. A. & Edwards, R. G. Chiasma frequency and maternal age in mammals. Nature218, 22–28 (1968). ArticleCASPubMed Google Scholar
Koehler, K. E. et al. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nature Genet.14, 406–414 (1996). ArticleCASPubMed Google Scholar
Ross, L. O., Maxfield, R. & Dawson, D. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc. Natl Acad. Sci. USA93, 4979–4983 (1996). ArticleCASPubMedPubMed Central Google Scholar
Angell, R. R. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum. Genet.86, 383–387 (1991). ArticleCASPubMed Google Scholar
Jeffreys, C. A., Burrage, P. S. & Bickel, S. E. A model system for increased meiotic nondisjunction in older oocytes. Curr. Biol.13, 498–503 (2003). ArticleCASPubMed Google Scholar
Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A. SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nature Genet.37, 1351–1355 (2005). ArticleCASPubMed Google Scholar
Liu, L. & Keefe, D. L. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod. Biomed. Online16, 103–112 (2008). ArticleCASPubMed Google Scholar
Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol.20, 1522–1528 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lister, L. M. et al. Age-related meiotic segregation errors in Mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol.20, 1511–1521 (2010). ArticleCASPubMed Google Scholar
Chiang, T., Schultz, R. M. & Lampson, M. Meiotic origins of maternal age-related aneuploidy. Biol. Reprod.86, 1–7 (2011). Google Scholar
Revenkova, E., Herrmann, K., Adelfalk, C. & Jessberger, R. Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol.20, 1529–1533 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev.24, 2505–2516 (2010). This series of recent papers focuses on meiotic cohesins during oogenesis in the mouse. References 50–53 link loss of cohesin proteins with maternal age-dependent aneuploidy. References 54 and 55 provide evidence that cohesin proteins loaded during fetal development are necessary and sufficient to orchestrate meiotic chromosome segregation in the adult. ArticleCASPubMedPubMed Central Google Scholar
Angell, R. R., Xian, J., Keith, J., Ledger, W. & Baird, D. T. First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet. Cell Genet.65, 194–202 (1994). ArticleCASPubMed Google Scholar
Pellestor, F., Andreo, B., Arnal, F., Humeau, C. & Demaille, J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum. Genet.112, 195–203 (2003). PubMed Google Scholar
Fisher, J. M., Harvey, J. F., Morton, N. E. & Jacobs, P. A. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am. J. Hum. Genet.56, 669–675 (1995). CASPubMedPubMed Central Google Scholar
Hassold, T., Merrill, M., Adkins, K., Freeman, S. & Sherman, S. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am. J. Hum. Genet.57, 867–874 (1995). CASPubMedPubMed Central Google Scholar
Bond, D. J. & Chandley, A. C. in Aneuploidy 83–90 (Oxford Univ. Press, 1983). Google Scholar
Garcia-Cruz, R. et al. Dynamics of cohesin proteins REC8, STAG3, SMC1 β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum. Reprod.25, 2316–2327 (2010). ArticleCASPubMed Google Scholar
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol.8, 379–393 (2007). ArticleCAS Google Scholar
Kot, M. C. & Handel, M. A. Spermatogenesis in XO,Sxr mice: role of the Y chromosome. J. Exp. Zool.256, 92–105 (1990). ArticleCASPubMed Google Scholar
Sutcliffe, M. J., Darling, S. M. & Burgoyne, P. S. Spermatogenesis in XY, XYSxra and XOSxra mice: a quantitative analysis of spermatogenesis throughout puberty. Mol. Reprod. Dev.30, 81–89 (1991). ArticleCASPubMed Google Scholar
LeMaire-Adkins, R., Radke, K. & Hunt, P. A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol.139, 1611–1619 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kouznetsova, A., Lister, L., Nordenskjold, M., Herbert, M. & Hoog, C. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nature Genet.39, 966–968 (2007). ArticleCASPubMed Google Scholar
LeMaire-Adkins, R. & Hunt, P. A. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics156, 775–783 (2000). CASPubMedPubMed Central Google Scholar
Nagaoka, S. I., Hodges, C. A., Albertini, D. F. & Hunt, P. A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol.21, 651–657 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gui, L. & Homer, H. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development139, 1941–1946 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kolano, A., Brunet, S., Silk, A. D., Cleveland, D. W. & Verlhac, M. H. Error prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc. Natl Acad. Sci. USA 2 May 2012 (doi:10.1073/pnas.1204686109). ArticleCAS Google Scholar
Lane, S. I. R., Yun, Y. & Jones, K. T. Timing of anaphase promoting complex activation in mouse oocytes is predicted by microtubule–kinetochore attachment, but not by bivalent alignment or tension. Development139, 1947–1955 (2012). The studies described in references 70–73 provide evidence that the spindle assembly checkpoint mechanism differs in the oocyte and that metaphase alignment of all chromosomes is not a prerequisite for anaphase onset. This difference provides a mechanism whereby various different factors can all lead to aneuploidy. ArticleCASPubMed Google Scholar
Steuerwald, N., Cohen, J., Herrera, R. J., Sandalinas, M. & Brenner, C. A. Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol. Hum. Reprod.7, 49–55 (2001). ArticleCASPubMed Google Scholar
Brunet, S., Pahlavan, G., Taylor, S. & Maro, B. Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes. Reproduction126, 443–450 (2003). ArticleCASPubMed Google Scholar
Wassmann, K., Niault, T. & Maro, B. Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Curr. Biol.13, 1596–1608 (2003). ArticleCASPubMed Google Scholar
Homer, H. A., McDougall, A., Levasseur, M., Murdoch, A. P. & Herbert, M. Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction130, 829–843 (2005). ArticleCASPubMed Google Scholar
McGuinness, B. E. et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol.19, 369–380 (2009). ArticleCASPubMed Google Scholar
Woods, L. M. et al. Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J. Cell Biol.145, 1395–1406 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yin, H., Cukurcam, S., Betzendahl, I., Adler, I. D. & Eichenlaub-Ritter, U. Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes. Chromosoma107, 514–522 (1998). ArticleCASPubMed Google Scholar
Hodges, C. A. et al. Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Hum. Reprod.17, 1171–1180 (2002). ArticleCASPubMed Google Scholar
Hunt, P. A. et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol.13, 546–553 (2003). ArticleCASPubMed Google Scholar
Selesniemi, K., Lee, H. J., Muhlhauser, A. & Tilly, J. L. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA108, 12319–12324 (2011). This provocative report links caloric restriction with decreased levels of aneuploidy in the ageing female mouse. ArticleCASPubMedPubMed Central Google Scholar
Battaglia, D. E., Goodwin, P., Klein, N. A. & Soules, M. R. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum. Reprod.11, 2217–2222 (1996). ArticleCASPubMed Google Scholar
Volarcik, K. et al. The meiotic competence of in-vitro matured human oocytes is influenced by donor age: evidence that folliculogenesis is compromised in the reproductively aged ovary. Hum. Reprod.13, 154–160 (1998). ArticleCASPubMed Google Scholar
Reis, A. et al. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes. Nature Cell Biol.9, 1192–1198 (2007). ArticleCASPubMed Google Scholar
Homer, H., Gui, L. & Carroll, J. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science326, 991–994 (2009). ArticleCASPubMedPubMed Central Google Scholar
Can, A., Semiz, O. & Cinar, O. Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol. Hum. Reprod.11, 389–396 (2005). ArticleCASPubMed Google Scholar
Pacchierotti, F., Ranaldi, R., Eichenlaub-Ritter, U., Attia, S. & Adler, I. D. Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse. Mutat. Res.651, 64–70 (2008). ArticleCASPubMed Google Scholar
Eichenlaub-Ritter, U. et al. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat. Res.651, 82–92 (2008). ArticleCASPubMed Google Scholar
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U. & Smitz, J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res.651, 71–81 (2008). ArticleCASPubMed Google Scholar
Peretz, J., Gupta, R. K., Singh, J., Hernandez-Ochoa, I. & Flaws, J. A. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci.119, 209–217 (2011). ArticleCASPubMed Google Scholar
Bloom, M. S. et al. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil. Steril.96, 672–677.e2 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fujimoto, V. Y. et al. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil. Steril.95, 1816–1819 (2011). ArticleCASPubMed Google Scholar
Susiarjo, M., Hassold, T. J., Freeman, E. & Hunt, P. A. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet.3, e5 (2007).
Allard, P. & Colaiacovo, M. P. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc. Natl Acad. Sci. USA107, 20405–20410 (2010). These studies provide evidence that exposure to the bisphenol A (BPA) disrupts the prophase events of meiosis in the ovaries of mice and worms, setting the stage for nondisjunctional events during the meiotic divisions. ArticleCASPubMedPubMed Central Google Scholar
Brieno-Enriquez, M. A. et al. Human meiotic progression and recombination are affected by bisphenol A exposure during in vitro human oocyte development. Hum. Reprod.26, 2807–2818 (2011). ArticleCASPubMed Google Scholar
Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S. & Schultz, R. M. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod.62, 1526–1535 (2000). ArticleCASPubMed Google Scholar
Khosla, S., Dean, W., Brown, D., Reik, W. & Feil, R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod.64, 918–926 (2001). ArticleCASPubMed Google Scholar
Mann, M. R. et al. Selective loss of imprinting in the placenta following preimplantation development in culture. Development131, 3727–3735 (2004). ArticleCASPubMed Google Scholar
Rivera, R. M. et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum. Mol. Genet.17, 1–14 (2008). ArticleCASPubMed Google Scholar
Market-Velker, B. A., Zhang, L., Magri, L. S., Bonvissuto, A. C. & Mann, M. R. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet.19, 36–51 (2010). ArticleCASPubMed Google Scholar
Denomme, M. M., Zhang, L. & Mann, M. R. Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil. Steril.96, 734–738.e2 (2011). ArticleCASPubMed Google Scholar
Harlap, S. et al. Chromosome abnormalities in oral contraceptive breakthrough pregnancies. Lancet1, 1342–1343 (1979). ArticleCASPubMed Google Scholar
Maudlin, I. & Fraser, L. R. The effect of PMSG dose on the incidence of chromosomal anomalies in mouse embryos fertilized in vitro. J. Reprod. Fertil.50, 275–280 (1977). ArticleCASPubMed Google Scholar
Munne, S. et al. Treatment-related chromosome abnormalities in human embryos. Hum. Reprod.12, 780–784 (1997). ArticleCASPubMed Google Scholar
Baart, E. B. et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum. Reprod.22, 980–988 (2007). ArticlePubMed Google Scholar
Rubio, C. et al. Prospective cohort study in high responder oocyte donors using two hormonal stimulation protocols: impact on embryo aneuploidy and development. Hum. Reprod.25, 2290–2297 (2010). ArticleCASPubMed Google Scholar
Penrose, L. in The Early Conceptus, Normal and Abnormal 94–97 (Univ. St Andrews, 1964). Google Scholar
Bond, D. J. & Chandley, A. C. in Aneuploidy 67–75 (Oxford Univ. Press, 1983). Google Scholar
Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science300, 1251–1256 (2003). ArticlePubMedCAS Google Scholar
Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA100, 11457–11462 (2003). ArticleCASPubMedPubMed Central Google Scholar
Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature427, 148–154 (2004). ArticleCASPubMed Google Scholar
Nayernia, K. et al. _In vitro_-differentiated embryonic stem cells give rise to male gametes that can generate offspring in mice. Dev. Cell11, 125–132 (2006). ArticleCASPubMed Google Scholar
Aflatoonian, B. et al. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum. Reprod.24, 3150–3159 (2009). ArticleCASPubMed Google Scholar
Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N. & Reijo Pera, R. A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature462, 222–225 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nicholas, C. R., Haston, K. M., Grewall, A. K., Longacre, T. A. & Reijo Pera, R. A. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum. Mol. Genet.18, 4376–4389 (2009). ArticleCASPubMedPubMed Central Google Scholar
White, Y. A. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Med.18, 413–421 (2012). ArticleCASPubMed Google Scholar
The Practice Committee of the Society for Assisted Reproductive Technology, Practice Committee of the American Society for Reproductive Medicine. Preimplantation genetic testing: a Practice Committee opinion. Fertil. Steril.90, S136–S143 (2008).
Committee on Genetics. ACOG Committee Opinion No. 430: preimplantation genetic screening for aneuploidy. Obstet. Gynecol.113, 766–767 (2009).
Munne, S., Wells, D. & Cohen, J. Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. Fertil. Steril.94, 408–430 (2010). ArticlePubMed Google Scholar
Handyside, A. H. PGD and aneuploidy screening for 24 chromosomes by genome-wide SNP analysis: seeing the wood and the trees. Reprod. Biomed. Online23, 686–691 (2011). ArticleCASPubMed Google Scholar
Lamb, N. E. et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet.6, 1391–1399 (1997). ArticleCASPubMed Google Scholar
Hassold, T. et al. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutagen.28, 167–175 (1996). ArticleCASPubMed Google Scholar
Zenzes, M. T. & Casper, R. F. Cytogenetics of human oocytes, zygotes, and embryos after in vitro fertilization. Hum. Genet.88, 367–375 (1992). ArticleCASPubMed Google Scholar
Magli, M. C., Gianaroli, L. & Ferraretti, A. P. Chromosomal abnormalities in embryos. Mol. Cell Endocrinol.183, S29–S34 (2001). ArticleCASPubMed Google Scholar
Staessen, C. et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum. Reprod.19, 2849–2858 (2004). ArticlePubMed Google Scholar
Munne, S. et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod. Biomed. Online14, 628–634 (2007). ArticleCASPubMed Google Scholar
Ercelen, N. et al. Successful preimplantation genetic aneuploidy screening in Turkish patients. Genet. Mol. Res.10, 4093–4103 (2011). ArticleCASPubMed Google Scholar
Obradors, A. et al. Whole-chromosome aneuploidy analysis in human oocytes: focus on comparative genomic hybridization. Cytogenet. Genome Res.133, 119–126 (2011). ArticleCASPubMed Google Scholar
Martin, R. H. & Rademaker, A. The frequency of aneuploidy among individual chromosomes in 6,821 human sperm chromosome complements. Cytogenet. Cell Genet.53, 103–107 (1990). ArticleCASPubMed Google Scholar
Martin, R. H., Ko, E. & Rademaker, A. Distribution of aneuploidy in human gametes: comparison between human sperm and oocytes. Am. J. Med. Genet.39, 321–331 (1991). ArticleCASPubMed Google Scholar
Templado, C., Vidal, F. & Estop, A. Aneuploidy in human spermatozoa. Cytogenet. Genome Res.133, 91–99 (2011). ArticleCASPubMed Google Scholar