Pleiotropy in complex traits: challenges and strategies (original) (raw)
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). Characteristics of reported GWAS results listed in the US National Human Genome Research Institute (NHGRI) catalogue are discussed in this paper. CASPubMedPubMed Central Google Scholar
Plenge, R. M. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet.77, 1044–1060 (2005). CASPubMedPubMed Central Google Scholar
Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genet.40, 955–962 (2008). CASPubMed Google Scholar
Kyogoku, C. et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet.75, 504–507 (2004). CASPubMedPubMed Central Google Scholar
Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genet.39, 857–864 (2007). CASPubMed Google Scholar
Fletcher, O. & Houlston, R. S. Architecture of inherited susceptibility to common cancer. Nature Rev. Cancer10, 353–361 (2010). CAS Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet381, 1371–1379 (2013). This paper presents a genome-wide analysis of CP associations across five psychiatric disorders.
Stearns, F. W. One hundred years of pleiotropy: a retrospective. Genetics186, 767–773 (2010). This is a historical review of pleiotropy. CASPubMedPubMed Central Google Scholar
Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nature Rev. Genet.12, 204–213 (2011). This excellent Review discusses pleiotropy in model organisms and the implications for evolution. CASPubMed Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. Major depression and generalized anxiety disorder. Same genes, (partly) different environments? Arch. Gen. Psychiatry49, 716–722 (1992). CASPubMed Google Scholar
Criswell, L. A. et al. Analysis of families in the Multiple Autoimmune Disease Genetics Consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet.76, 561–571 (2005). CASPubMedPubMed Central Google Scholar
Eaton, W. W., Rose, N. R., Kalaydjian, A., Pedersen, M. G. & Mortensen, P. B. Epidemiology of autoimmune diseases in Denmark. J. Autoimmun.29, 1–9 (2007). PubMedPubMed Central Google Scholar
Sivakumaran, S. et al. Abundant pleiotropy in human complex diseases and traits. Am. J. Hum. Genet.89, 607–618 (2011). CASPubMedPubMed Central Google Scholar
Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet.7, e1002254 (2011). Systematic evaluation of CP associations is carried out in this study across seven autoimmune diseases and application of CPMA method. CASPubMedPubMed Central Google Scholar
Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet.5, e1000792 (2009). PubMedPubMed Central Google Scholar
Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature491, 119–124 (2012). This is the largest study of Crohn's disease and ulcerative colitis and identifies more than 100 CP associations. CASPubMedPubMed Central Google Scholar
Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genet.41, 18–24 (2009). CASPubMed Google Scholar
Iles, M. M. et al. A variant in FTO shows association with melanoma risk not due to BMI. Nature Genet.45, 428–432 (2013). CASPubMed Google Scholar
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genet.43, 333–338 (2011). CASPubMed Google Scholar
The Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature Genet.43, 339–344 (2011).
Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nature Genet.41, 899–904 (2009). CASPubMed Google Scholar
Yasuno, K. et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genet.42, 420–425 (2010). CASPubMed Google Scholar
Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genet.39, 984–988 (2007). CASPubMed Google Scholar
Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nature Genet.40, 310–315 (2008). CASPubMed Google Scholar
Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res.22, 1748–1759 (2012). CASPubMedPubMed Central Google Scholar
Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell148, 1223–1241 (2012). CASPubMedPubMed Central Google Scholar
Heinzen, E. L. et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am. J. Hum. Genet.86, 707–718 (2010). CASPubMedPubMed Central Google Scholar
Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature460, 748–752 (2009). CASPubMed Google Scholar
Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet373, 234–239 (2009). CASPubMed Google Scholar
Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol.179, 4704–4710 (2007). CASPubMed Google Scholar
Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest.121, 3635–3644 (2011). CASPubMedPubMed Central Google Scholar
Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nature Genet.43, 902–907 (2011). CASPubMed Google Scholar
Behrens, T. W. Lyp breakdown and autoimmunity. Nature Genet.43, 821–822 (2011). CASPubMed Google Scholar
Zhernakova, A., van Diemen, C. C. & Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nature Rev. Genet.10, 43–55 (2009). CASPubMed Google Scholar
Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genet.41, 882–884 (2009). CASPubMed Google Scholar
Wasserman, N. F., Aneas, I. & Nobrega, M. A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res.20, 1191–1197 (2010). CASPubMedPubMed Central Google Scholar
Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet380, 572–580 (2012). This paper presents an example of Mendelian randomization using results from GWASs. CASPubMedPubMed Central Google Scholar
Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature452, 633–637 (2008). CASPubMed Google Scholar
Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature452, 638–642 (2008). CASPubMedPubMed Central Google Scholar
Chanock, S. J. & Hunter, D. J. Genomics: when the smoke clears. Nature452, 537–538 (2008). CASPubMed Google Scholar
Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using SNP-derived genomic relationships and restricted maximum likelihood. Bioinformatics28, 2540–2542 (2012). CASPubMedPubMed Central Google Scholar
Zeger, S. L. & Liang, K. Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics42, 121–130 (1986). CASPubMed Google Scholar
Lange, C., Silverman, E. K., Xu, X., Weiss, S. T. & Laird, N. M. A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics4, 195–206 (2003). PubMed Google Scholar
Liu, J., Pei, Y., Papasian, C. J. & Deng, H. W. Bivariate association analyses for the mixture of continuous and binary traits with the use of extended generalized estimating equations. Genet. Epidemiol.33, 217–227 (2009). PubMedPubMed Central Google Scholar
Lee, P. H. et al. Modifiers and subtype-specific analyses in whole-genome association studies: a likelihood framework. Hum. Hered.72, 10–20 (2011). PubMed Google Scholar
Hartley, S. W., Monti, S., Liu, C. T., Steinberg, M. H. & Sebastiani, P. Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction. Front. Genet.3, 176 (2012). PubMedPubMed Central Google Scholar
O'Reilly, P. F. et al. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE7, e34861 (2012). CASPubMedPubMed Central Google Scholar
Zhang, H., Liu, C. T. & Wang, X. An association test for multiple traits based on the generalized Kendall's tau. J. Am. Stat. Assoc.105, 473–481 (2010). CASPubMedPubMed Central Google Scholar
Ott, J. & Rabinowitz, D. A principal-components approach based on heritability for combining phenotype information. Hum. Hered.49, 106–111 (1999). CASPubMed Google Scholar
Lange, C. et al. A family-based association test for repeatedly measured quantitative traits adjusting for unknown environmental and/or polygenic effects. Stat. Appl. Genet. Mol. Biol.3, Article17 (2004). PubMed Google Scholar
Klei, L., Luca, D., Devlin, B. & Roeder, K. Pleiotropy and principal components of heritability combine to increase power for association analysis. Genet. Epidemiol.32, 9–19 (2008). PubMed Google Scholar
Ferreira, M. A. & Purcell, S. M. A multivariate test of association. Bioinformatics25, 132–133 (2009). CASPubMed Google Scholar
Shriner, D. Moving toward system genetics through multiple trait analysis in genome-wide association studies. Front. Genet.3, 1 (2012). This is a review of multivariate approaches for detecting CP associations. PubMedPubMed Central Google Scholar
Ioannidis, J. P., Thomas, G. & Daly, M. J. Validating, augmenting and refining genome-wide association signals. Nature Rev. Genet.10, 318–329 (2009). CASPubMed Google Scholar
Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genet.44, 483–489 (2012). CASPubMed Google Scholar
Fisher, R. A. Statistical Methods for Research Workers (Oliver & Boyd, 1925). Google Scholar
Kavvoura, F. K. & Ioannidis, J. P. Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum. Genet.123, 1–14 (2008). PubMed Google Scholar
de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet.17, R122–R128 (2008). CASPubMedPubMed Central Google Scholar
Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet.90, 821–835 (2012). CASPubMedPubMed Central Google Scholar
O'Brien, P. C. Procedures for comparing samples with multiple endpoints. Biometrics40, 1079–1087 (1984). CASPubMed Google Scholar
Xu, X., Tian, L. & Wei, L. J. Combining dependent tests for linkage or association across multiple phenotypic traits. Biostatistics4, 223–229 (2003). PubMed Google Scholar
Yang, Q., Wu, H., Guo, C. Y. & Fox, C. S. Analyze multivariate phenotypes in genetic association studies by combining univariate association tests. Genet. Epidemiol.34, 444–454 (2010). PubMedPubMed Central Google Scholar
van der Sluis, S., Posthuma, D. & Dolan, C. V. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLoS Genet.9, e1003235 (2013). CASPubMedPubMed Central Google Scholar
Huang, J., Johnson, A. D. & O'Donnell, C. J. PRIMe: a method for characterization and evaluation of pleiotropic regions from multiple genome-wide association studies. Bioinformatics27, 1201–1206 (2011). CASPubMedPubMed Central Google Scholar
Nica, A. C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet.6, e1000895 (2010). PubMedPubMed Central Google Scholar
Lin, D. Y. & Sullivan, P. F. Meta-analysis of genome-wide association studies with overlapping subjects. Am. J. Hum. Genet.85, 862–872 (2009). CASPubMedPubMed Central Google Scholar
Voight, B. F. et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet.8, e1002793 (2012). CASPubMedPubMed Central Google Scholar
Vansteelandt, S. et al. On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects. Genet. Epidemiol.33, 394–405 (2009). PubMedPubMed Central Google Scholar
Lipman, P. J. & Lange, C. CGene: an R package for implementation of causal genetic analyses. Eur. J. Hum. Genet.19, 1292–1294 (2011). CASPubMedPubMed Central Google Scholar
Vanderweele, T. J. & Vansteelandt, S. Odds ratios for mediation analysis for a dichotomous outcome. Am. J. Epidemiol.172, 1339–1348 (2010). PubMedPubMed Central Google Scholar
VanderWeele, T. J. et al. Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am. J. Epidemiol.175, 1013–1020 (2012). PubMedPubMed Central Google Scholar
Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med.27, 1133–1163 (2008). PubMed Google Scholar
Glymour, M. M., Tchetgen, E. J. & Robins, J. M. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am. J. Epidemiol.175, 332–339 (2012). PubMedPubMed Central Google Scholar
McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry60, 497–502 (2003). PubMed Google Scholar
Rommelse, N. N., Franke, B., Geurts, H. M., Hartman, C. A. & Buitelaar, J. K. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur. Child Adolesc. Psychiatry19, 281–295 (2010). PubMedPubMed Central Google Scholar
McKay, G. J. et al. Evidence of association of APOE with age-related macular degeneration: a pooled analysis of 15 studies. Hum. Mutat.32, 1407–1416 (2011). CASPubMedPubMed Central Google Scholar
Ferreira, M. A. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genet.40, 1056–1058 (2008). CASPubMed Google Scholar
Wang, K. et al. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum. Mol. Genet.19, 2059–2067 (2010). CASPubMedPubMed Central Google Scholar
Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med.359, 2767–2777 (2008). CASPubMedPubMed Central Google Scholar
Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet.7, e1002004 (2011). CASPubMedPubMed Central Google Scholar
Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature488, 508–511 (2012). CASPubMedPubMed Central Google Scholar
Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Rev. Genet.12, 56–68 (2011). CASPubMed Google Scholar
Goh, K. I. et al. The human disease network. Proc. Natl Acad. Sci. USA104, 8685–8690 (2007). A first step is taken in this study towards the construction of the genotype–phenotype map in humans using known disease genes reported in OMIM (Online Mendelian Inheritance in Man). CASPubMedPubMed Central Google Scholar
Lee, D. S. et al. The implications of human metabolic network topology for disease comorbidity. Proc. Natl Acad. Sci. USA105, 9880–9885 (2008). CASPubMedPubMed Central Google Scholar
DePaolo, J., Goker-Alpan, O., Samaddar, T., Lopez, G. & Sidransky, E. The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. Mov. Disord.24, 1571–1578 (2009). Google Scholar
Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics26, 1205–1210 (2010). CASPubMedPubMed Central Google Scholar
Denny, J. C. et al. Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. Am. J. Hum. Genet.89, 529–542 (2011). CASPubMedPubMed Central Google Scholar
Pendergrass, S. A. et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet. Epidemiol.35, 410–422 (2011). PubMedPubMed Central Google Scholar
Pendergrass, S. A. et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the population architecture using genomics and epidemiology (PAGE) network. PLoS Genet.9, e1003087 (2013). CASPubMedPubMed Central Google Scholar
Rasmussen-Torvik, L. J. et al. High density GWAS for LDL cholesterol in African Americans using electronic medical records reveals a strong protective variant in APOE. Clin. Transl. Sci.5, 394–399 (2012). CASPubMedPubMed Central Google Scholar
Smoller, J. W., Lunetta, K. L. & Robins, J. Implications of comorbidity and ascertainment bias for identifying disease genes. Am. J. Med. Genet.96, 817–822 (2000). CASPubMed Google Scholar
Berkson, J. Limitations of the application of fourfold table analysis to hospital data. Biometrics2, 47–53 (1946). CASPubMed Google Scholar
Wray, N. R., Lee, S. H. & Kendler, K. S. Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. Eur. J. Hum. Genet.20, 668–674 (2012). PubMedPubMed Central Google Scholar
McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet.9, 356–369 (2008). This Review presents an overview of key considerations and challenges in GWASs. CASPubMed Google Scholar
Laurie, C. C. et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet. Epidemiol.34, 591–602 (2010). PubMedPubMed Central Google Scholar
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet.38, 904–909 (2006). CASPubMed Google Scholar
Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nature Rev. Genet.11, 459–463 (2010). CASPubMed Google Scholar
Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nature Rev. Genet.11, 356–366 (2010). CASPubMed Google Scholar
Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nature Rev. Genet.11, 499–511 (2010). CASPubMed Google Scholar
Kann, M. Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief. Bioinform.11, 96–110 (2010). CASPubMed Google Scholar
Adzhubei, I. et al. A method and server for predicting damaging missense mutations. Nature Methods7, 248–249 (2010). CASPubMedPubMed Central Google Scholar
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protoc.4, 1073–1081 (2009). CAS Google Scholar
Freedman, M. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nature Genet.43, 513–518 (2011). CASPubMed Google Scholar
Fehrmann, R. et al. _Trans_-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet.7, e1002197 (2011). CASPubMedPubMed Central Google Scholar
Majewski, J. & Pastinen, T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet.27, 72–79 (2011). CASPubMed Google Scholar
Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet.24, 408–415 (2008). CASPubMedPubMed Central Google Scholar
Baker, M. Biorepositories: building better biobanks. Nature486, 141–146 (2012). CASPubMed Google Scholar
Cantor, R., Lange, K. & Sinsheimer, J. S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet.86, 6–22 (2010). CASPubMedPubMed Central Google Scholar
Eleftherohorinou, H. et al. Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PLoS Genet.4, e8068 (2009). Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). CASPubMed Google Scholar
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature317, 230–234 (1985). CASPubMed Google Scholar
Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell44, 419–428 (1986). CASPubMed Google Scholar
Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature475, 217–221 (2011). CASPubMedPubMed Central Google Scholar
Esvelt, K. M. & Wang, H. H. Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol.9, 641 (2013). PubMedPubMed Central Google Scholar
Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nature Rev. Genet.12, 628–640 (2011). CASPubMed Google Scholar
Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet.89, 496–506 (2011). CASPubMedPubMed Central Google Scholar
Henderson, N. C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl Acad. Sci. USA103, 5060–5065 (2006). CASPubMedPubMed Central Google Scholar
Radosavljevic, G. et al. The roles of galectin-3 in autoimmunity and tumor progression. Immunol. Res.52, 100–110 (2012). CASPubMed Google Scholar
Honjo, Y., Nangia-Makker, P., Inohara, H. & Raz, A. Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin. Cancer Res.7, 661–668 (2001). CASPubMed Google Scholar
Shekhar, M. P., Nangia-Makker, P., Tait, L., Miller, F. & Raz, A. Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am. J. Pathol.165, 1931–1941 (2004). CASPubMedPubMed Central Google Scholar
Baptiste, T. A., James, A., Saria, M. & Ochieng, J. Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp. Cell Res.313, 652–664 (2007). CASPubMed Google Scholar
Nangia-Makker, P. et al. Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. Int. J. Cancer127, 2530–2541 (2010). CASPubMedPubMed Central Google Scholar
Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res.21, 223–242 (2012). PubMedPubMed Central Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). CASPubMedPubMed Central Google Scholar
Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genet.43, 761–767 (2011). CASPubMed Google Scholar
Silverberg, M. S. et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nature Genet.41, 216–220 (2009). CASPubMed Google Scholar
Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nature Genet.42, 985–990 (2010). CASPubMed Google Scholar
Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genet.42, 1118–1125 (2010). CASPubMed Google Scholar
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature466, 707–713 (2010). CASPubMedPubMed Central Google Scholar
Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nature Genet.44, 58–61 (2012). CAS Google Scholar
Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron70, 863–885 (2011). CASPubMedPubMed Central Google Scholar
Pober, B. R. Williams-Beuren syndrome. N. Engl. J. Med.362, 239–252 (2010). CASPubMed Google Scholar