Empirical fitness landscapes and the predictability of evolution (original) (raw)
Lehner, B. Genotype to phenotype: lessons from model organisms for human genetics. Nature Rev. Genet.14, 168–178 (2013). ArticleCASPubMed Google Scholar
Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nature Rev. Genet.12, 204–213 (2011). ArticleCASPubMed Google Scholar
Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet.9, 855–867 (2008). ArticleCASPubMed Google Scholar
Gavrilets, S. Fitness Landscapes and the Origin of Species (Princeton Univ. Press, 2004). Google Scholar
Achaz, G., Rodriguez-Verdugo, A., Gaut, B. S. & Tenaillon, O. The reproducibility of adaptation in the light of experimental evolution with whole genome sequencing. Adv. Exp. Med. Biol.781, 211–231 (2014). ArticlePubMed Google Scholar
Lobkovsky, A. E. & Koonin, E. V. Replaying the tape of life: quantification of the predictability of evolution. Frontiers Genet.3, 246 (2012). Article Google Scholar
Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. 6th Int. Congress Genet.1, 356–366 (1932). This paper introduces the concept of the fitness landscape as a key component of Wright's shifting balance theory. Google Scholar
Colegrave, N. & Buckling, A. Microbial experiments on adaptive landscapes. BioEssays27, 1167–1173 (2005). ArticlePubMed Google Scholar
Szendro, I. G., Schenk, M. F., Franke, J., Krug, J. & de Visser, J. A. G. M. Quantitative analyses of empirical fitness landscapes. J. Stat. Mech. P01005 (2013).
Haldane, J. B. S. A mathematical theory of natural selection. Part VIII. Metastable populations. Proc. Cambridge Philos. Soc.27, 137–142 (1931). Article Google Scholar
Maynard Smith, J. Natural selection and the concept of a protein space. Nature225, 563–564 (1970). This study presents the realization that genotypic space is discrete and that mutational pathways are only accessible when they pass through functional genotypes. Article Google Scholar
Kauffman, S. A. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol.128, 11–45 (1987). This is the first mathematical exploration of random fitness landscapes and their consequences for adaptation. ArticleCASPubMed Google Scholar
Kauffman, S. A. & Weinberger, E. D. The NK model of rugged fitness landscapes and its application to the maturation of the immune response. J. Theor. Biol.141, 211–245 (1989). ArticleCASPubMed Google Scholar
Harms, M. J. & Thornton, J. W. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nature Rev. Genet.14, 559–571 (2013). ArticleCASPubMed Google Scholar
Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature345, 86–89 (1990). This is the first empirical analysis of a three-locus fitness landscape of lysozymes in game birds. ArticleCASPubMed Google Scholar
Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nature Rev. Genet.14, 827–839 (2013). ArticleCASPubMed Google Scholar
Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature336, 435–440 (1988). ArticleCASPubMed Google Scholar
Kouyos, R. D., Silander, O. K. & Bonhoeffer, S. Epistasis between deleterious mutations and the evolution of recombination. Trends Ecol. Evol.22, 308–315 (2007). ArticlePubMed Google Scholar
de Visser, J. A. G. M., Hoekstra, R. F. & van den Ende, H. Test of interaction between genetic markers that affect fitness in Aspergillus niger. Evolution51, 1499–1505 (1997). ArticleCASPubMed Google Scholar
Hall, D. W., Agan, M. & Pope, S. C. Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae. J. Hered.101, S75–S84 (2010). ArticlePubMed Google Scholar
Kondrashov, F. A. & Kondrashov, A. S. Multidimensional epistasis and the disadvantage of sex. Proc. Natl Acad. Sci. USA98, 12089–12092 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution59, 1165–1174 (2005). This paper formally introduces the concept of sign epistasis and proves its equivalence with limited pathway accessibility. CASPubMed Google Scholar
Poelwijk, F. J., Tanase-Nicola, S., Kiviet, D. J. & Tans, S. J. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol.272, 141–144 (2011). ArticlePubMed Google Scholar
Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science312, 111–114 (2006). This seminal study shows how sign epistasis limits the number of accessible trajectories on a five-locus fitness landscape of β-lactamase. ArticleCASPubMed Google Scholar
Weinreich, D. M., Lan, Y., Wylie, S. C. & Heckendorn, R. B. Should evolutionary geneticists worry about higher-order epistasis? Curr. Opin. Genet. Dev.23, 700–707 (2013). ArticleCASPubMedPubMed Central Google Scholar
O'Maille, P. E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nature Chem. Biol.4, 617–623 (2008). ArticleCAS Google Scholar
Lee, Y.-H., Dsouza, L. M. & Fox, G. E. Equally parsimonious pathways through an RNA sequence space are not equally likely. J. Mol. Evol.45, 278–284 (1997). ArticleCASPubMed Google Scholar
Aita, T., Iwakura, M. & Husimi, Y. A cross-section of the fitness landscape of dihydrofolate reductase. Protein Engineer.14, 633–638 (2001). ArticleCAS Google Scholar
Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science312, 97–101 (2006). ArticleCASPubMed Google Scholar
Brown, K. M. et al. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol. Biol. Evol.27, 2682–2690 (2010). ArticleCASPubMedPubMed Central Google Scholar
da Silva, J., Coetzer, M., Nedellec, R., Pastore, C. & Mosier, D. E. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region. Genetics185, 293–303 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goulart, C. P. et al. Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS ONE8, e56040 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lozovsky, E. R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl Acad. Sci. USA106, 12015–12030 (2009). Article Google Scholar
Lunzer, M., Miller, S. P., Felsheim, R. & Dean, A. M. The biochemical architecture of an ancient adaptive landscape. Science310, 499–501 (2005). This study reconstructs a fitness landscape by analysing enzyme function as a phenotype that links genotype and fitness. ArticleCASPubMed Google Scholar
Novais, A. et al. Evolutionary trajectories of β-lactamase CTX-M-1 cluster enzymes: predicting antibiotic resistance. PLoS Pathog.6, e1000735 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Tan, L., Serene, S., Chao, H. X. & Gore, J. Hidden randomness between fitness landscapes limits reverse evolution. Phys. Rev. Lett.106, 198102 (2011). ArticlePubMedCAS Google Scholar
de Vos, M. G. J., Poelwijk, F. J., Battich, N., Ndika, J. D. T. & Tans, S. J. Environmental dependence of genetic constraint. PLoS Genet.9, e1003580 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science332, 1190–1192 (2011). ArticleCASPubMedPubMed Central Google Scholar
Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science332, 1193–1196 (2011). ArticleCASPubMed Google Scholar
Franke, J., Klözer, A., de Visser, J. A. G. M. & Krug, J. Evolutionary accessibility of mutational pathways. PLoS Computat. Biol.7, e1002134 (2011). ArticleCAS Google Scholar
Whitlock, M. C. & Bourguet, D. Factors affecting the genetic load in Drosophila: synergistic epistasis and correlations among fitness components. Evolution54, 1654–1660 (2000). ArticleCASPubMed Google Scholar
Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J. & de Visser, J. A. G. M. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol. Biol. Evol.30, 1779–1787 (2013). ArticleCASPubMedPubMed Central Google Scholar
Draghi, J. A. & Plotkin, J. B. Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution67, 3120–3131 (2013). ArticlePubMed Google Scholar
Wilke, C. O. & Adami, C. Interaction between directional epistasis and average mutational effects. Proc. R. Soc. B268, 1469–1474 (2001). ArticleCASPubMedPubMed Central Google Scholar
You, L. & Yin, J. Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage T7. Genetics160, 1273–1281 (2002). PubMedPubMed Central Google Scholar
DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet.6, 678–687 (2005). ArticleCASPubMed Google Scholar
Watson, R. A., Weinreich, D. M. & Wakeley, J. Genome structure and the benefits of sex. Evolution65, 523–536 (2010). ArticlePubMed Google Scholar
Conway Morris, S. Life's Solution: Inevitable Humans in a Lonely Universe (Cambridge Univ. Press, 2003). Book Google Scholar
Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton & Company, 1989). Google Scholar
Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature500, 571–574 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science335, 457–461 (2012). ArticleCASPubMed Google Scholar
Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA103, 9107–9112 (2006). ArticleCASPubMedPubMed Central Google Scholar
Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature489, 513–518 (2012). ArticleCASPubMedPubMed Central Google Scholar
Papp, B., Notebaart, R. A. & Pál, C. Systems-biology approaches for predicting genomic evolution. Nature Rev. Genet.12, 591–602 (2011). ArticleCASPubMed Google Scholar
Gillespie, J. H. Some properties of finite populations experiencing strong selection and weak mutation. Am. Naturalist121, 691–708 (1983). Article Google Scholar
Orr, H. A. The genetic theory of adaptation: a brief history. Nature Rev. Genet.6, 119–127 (2005). ArticleCASPubMed Google Scholar
Crona, K., Greene, D. & Barlow, M. The peaks and geometry of fitness landscapes. J. Theor. Biol.317, 1–10 (2013). ArticlePubMed Google Scholar
Whitlock, M. C., Phillips, P. C., Moore, F. B.-G. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Systemat.26, 601–629 (1995). Article Google Scholar
Hegarty, P. & Martinsson, A. On the existence of accessible paths in various models of fitness landscapes. Ann. Appl. Prob. (in the press).
Schmiegelt, B. & Krug, J. Evolutionary accessibility of modular fitness landscapes. J. Statist. Phys.154, 334–355 (2014). Article Google Scholar
Roy, S. W. Probing evolutionary repeatability: neutral and double changes and the predictability of evolutionary adaptation. PLoS ONE4, e4500 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102–103, 127–144 (1998).
Jain, K., Krug, J. & Park, S.-C. Evolutionary advantage of small populations on complex fitness landscapes. Evolution65, 1945–1955 (2011). ArticlePubMed Google Scholar
Rozen, D. E., Habets, M. G. J. L., Handel, A. & de Visser, J. A. G. M. Heterogeneous adaptive trajectories of small populations on complex fitness landscapes. PLoS ONE3, e1715 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Weissman, D. B., Desai, M. M., Fisher, D. S. & Feldman, M. W. The rate at which asexual populations cross fitness valleys. Theor. Popul. Biol.75, 286–300 (2009). ArticlePubMedPubMed Central Google Scholar
Isawa, Y., Michor, F. & Nowak, M. A. Stochastic tunnels in evolutionary dynamics. Genetics166, 1571–1579 (2004). Article Google Scholar
Woods, R. J. et al. Second-order selection for evolvability in a large Escherichia coli population. Science331, 1433–1436 (2011). This study experimentally shows the combined influence of epistasis and population dynamics on the outcome of evolution. ArticleCASPubMedPubMed Central Google Scholar
Szendro, I. G., Franke, J., de Visser, J. A. G. M. & Krug, J. Predictability of evolution depends non-monotonically on population size. Proc. Natl Acad. Sci. USA110, 571–576 (2013). ArticleCASPubMed Google Scholar
Rowe, W. et al. Analysis of a complete DNA–protein affinity landscape. J. R. Soc. Interface7, 397–408 (2010). ArticleCASPubMed Google Scholar
Jiménez, J. I., Xulvi-Brunet, R., Campbell, G. W., Turk-MacLeod, R. & Chen, I. A. Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc. Natl Acad. Sci.110, 14984–14989 (2013). This is an empirical analysis of the largest fitness landscape so far and involves >1014RNA molecules. ArticlePubMedPubMed Central Google Scholar
Hinkley, T. et al. A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nature Genet.43, 487–490 (2011). This paper presents an early empirical fitness landscape of large dimensions for HIV-1 with fitness predictions for the many missing genotypes. ArticleCASPubMed Google Scholar
Otwinowski, J. & Nemenman, I. Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. PLoS ONE8, e61570 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kinney, J. B., Murugan, A., Callan, C. G. & Cox, E. C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl Acad. Sci.107, 9158–9163 (2010). ArticleCASPubMedPubMed Central Google Scholar
Provine, W. B. Sewall Wright and Evolutionary Biology (Chicago Univ. Press, 1986). Google Scholar
de Visser, J. A. G. M., Park, S.-C. & Krug, J. Exploring the effect of sex on empirical fitness landscapes. Am. Naturalist174, S15–S30 (2009). Article Google Scholar
Wagner, A. Neutralism and selectionism: a network-based reconciliation. Nature Rev. Genet.9, 965–974 (2008). ArticleCASPubMed Google Scholar
Hietpas, R. T., Jensen, J. D. & Bolona, D. N. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA108, 7896–7901 (2011). ArticleCASPubMedPubMed Central Google Scholar
Heckmann, D. et al. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell153, 1579–1588 (2013). ArticleCASPubMed Google Scholar
Perfeito, L., Ghozzi, S., Berg, J., Schnetz, K. & Lässig, M. Nonlinear fitness landscape of a molecular pathway. PLoS Genet.7, e1002160 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chan, H. S. & Bornberg-Bauer, E. Perspectives on protein evolution from simple exact models. Appl. Bioinformat.1, 121–144 (2002). CAS Google Scholar
Schuster, P. Prediction of RNA secondary structures: from theory to models and real molecules. Rep. Progress Phys.69, 1419–1477 (2006). ArticleCAS Google Scholar
Mustonen, V., Kinney, J., Callan, C. G. & Lässig, M. Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites. Proc. Natl Acad. Sci.105, 12376–12381 (2008). ArticleCASPubMedPubMed Central Google Scholar
Heo, M., Kang, L. & Shakhnovich, E. I. Emergence of species in evolutionary “simulated annealing”. Proc. Natl Acad. Sci. USA106, 1869–1874 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wylie, S. C. & Shakhnovich, E. I. A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proc. Natl Acad. Sci. USA108, 9916–9921 (2011). ArticleCASPubMedPubMed Central Google Scholar
Russell, C. A. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science336, 1541–1547 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gong, L. I., Suchard, M. A. & Bloom, J. D. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife2, e00631 (2013). ArticlePubMedPubMed Central Google Scholar
Hall, B. G. Predicting evolution by in vitro evolution requires determining evolutionary pathways. Antimicrob. Agents Chemother.46, 3035–3038 (2002). ArticleCASPubMedPubMed Central Google Scholar
Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nature Rev. Genet.14, 243–248 (2013). ArticleCASPubMed Google Scholar
Ferguson, Andrew, L. et al. Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity38, 606–617 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hansen, T. F. & Wagner, G. P. Modeling genetic architecture: a multilinear theory of gene interaction. Theor. Popul. Biol.59, 61–86 (2001). ArticleCASPubMed Google Scholar
Neher, R. A. & Shraiman, B. I. Statistical genetics and evolution of quantitative traits. Rev. Modern Phys.83, 1283–1300 (2011). Article Google Scholar
Stadler, P. F. & Happel, R. Random field models of fitness landscapes. J. Math. Biol.38, 435–478 (1999). Article Google Scholar
Neidhart, J., Szendro, I. G. & Krug, J. Exact results for amplitude spectra of fitness landscapes. J. Theor. Biol.332, 218–227 (2013). ArticlePubMed Google Scholar
Kingman, J. F. C. A simple model for the balance between selection and mutation. J. Appl. Probabil.15, 1–12 (1978). Article Google Scholar
Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Predictability of evolutionary trajectories in fitness landscapes. PLoS Comput. Biol.7, e1002302 (2011). ArticleCASPubMedPubMed Central Google Scholar
Palmer, M. E., Moudgil, A. & Feldman, M. W. Long-term evolution is surprisingly predictable in lattice proteins. J. R. Soc. Interface10, 20130026 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Martin, G., Elena, S. F. & Lenormand, T. Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nature Genet.33, 555–560 (2007). ArticleCAS Google Scholar
Rokyta, D. R. et al. Epistasis between beneficial mutations and the phenotype-to-fitness map for a ssDNA virus. PLoS Genet.7, e1002075 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pearson, V. M., Miller, C. R. & Rokyta, D. R. The consistency of beneficial fitness effects of mutations across diverse genetic backgrounds. PLoS ONE7, e43864 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chou, H.-H., Delaney, N. F., Draghi, J. A. & Marx, C. J. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLoS Genet.10, e1004149 (2014). ArticlePubMedPubMed CentralCAS Google Scholar