The fundamental role of epigenetic events in cancer (original) (raw)
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev.16, 6–21 (2002).An excellent review of mammalian DNA methylation. CASPubMed Google Scholar
Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99, 3740–3745 (2002). CASPubMedPubMed Central Google Scholar
Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16, 168–174 (2000). CASPubMed Google Scholar
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet.21, 163–167 (1999). ArticleCASPubMed Google Scholar
Esteller, M. et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res.60, 2368–2371 (2000). CASPubMed Google Scholar
Herman, J. G. et al. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res.57, 837–841 (1997). CASPubMed Google Scholar
Burbee, D. G. et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J. Natl Cancer Inst.93, 691–699 (2001). CASPubMed Google Scholar
Dammann, R. et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genet.25, 315–319 (2000). CASPubMed Google Scholar
Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91, 9700–9704 (1994). CASPubMedPubMed Central Google Scholar
Esteller, M. et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst.92, 564–569 (2000). CASPubMed Google Scholar
Esteller, M. et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz–Jeghers syndrome. Oncogene19, 164–168 (2000). CASPubMed Google Scholar
Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med.344, 539–548 (2001). CASPubMed Google Scholar
Van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). CAS Google Scholar
Knudson, A. G. Chasing the cancer demon. Annu. Rev. Genet.34, 1–19 (2000). CASPubMed Google Scholar
Myohanen, S. K., Baylin, S. B. & Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res.58, 591–593 (1998). CASPubMed Google Scholar
Grady, W. M. et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nature Genet.26, 16–17 (2000). CASPubMed Google Scholar
Esteller, M. et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet.10, 3001–3007 (2001). CASPubMed Google Scholar
Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res.57, 808–811 (1997). CASPubMed Google Scholar
Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95, 6870–6875 (1998).References18and19provided an important link between epigenetic and genetic changes in colon cancer. Reference19illustrates how demethylation of an aberrantly silenced gene in cancer can restore gene expression and function. ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, H. et al. Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res.61, 6991–6995 (2001). CASPubMed Google Scholar
Esteller, M. et al. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol.155, 1767–1772 (1999). CASPubMedPubMed Central Google Scholar
Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B. & Herman, J. G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res.59, 793–797 (1999). CASPubMed Google Scholar
Esteller, M. et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res.61, 4689–4692 (2001). CASPubMed Google Scholar
Wales, M. M. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Med.1, 570–577 (1995). CASPubMed Google Scholar
Huang, T. H., Perry, M. R. & Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet.8, 459–470 (1999). CASPubMed Google Scholar
Toyota, M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res.59, 2307–2312 (1999). CASPubMed Google Scholar
Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet.24, 132–138 (2000). CASPubMed Google Scholar
Gonzalgo, M. L. et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res.57, 594–599 (1997). CASPubMed Google Scholar
Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. & Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res.12, 158–164 (2002). CASPubMedPubMed Central Google Scholar
Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and HDAC inhibition in human colorectal cancer. Nature Genet. May 6 [epub ahead of print] 2002.
Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature274, 775–780 (1978). CASPubMed Google Scholar
Rideout, W. M. III, Coetzee, G. A., Olumi, A. F. & Jones, P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science249, 1288–1290 (1990).This paper provides an example of how the base methylcytosine provides an endogenous site of mutagenic potential in the coding region of important genes. CASPubMed Google Scholar
Pfeifer, G. P., Tang, M. & Denissenko, M. F. Mutation hotspots and DNA methylation. Curr. Top. Microbiol. Immunol.249, 1–19 (2000). CASPubMed Google Scholar
Yoon, J. H. et al. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res.61, 7110–7117 (2001). CASPubMed Google Scholar
Magewu, A. N. & Jones, P. A. Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hotspot in human cancer. Mol. Cell. Biol.14, 4225–4232 (1994). CASPubMedPubMed Central Google Scholar
Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). CASPubMed Google Scholar
Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48, 1159–1161 (1988).These two papers outline the presence of DNA hypomethylation in human tumours. CASPubMed Google Scholar
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402, 187–191 (1999). CASPubMed Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999).An important paper that discusses the function of the mammalian DNMTs in establishing and maintaining DNA methylation patterns. CASPubMed Google Scholar
Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA96, 14412–14417 (1999). CASPubMedPubMed Central Google Scholar
Qu, G. Z., Grundy, P. E., Narayan, A. & Ehrlich, M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet. Cytogenet.109, 34–39 (1999). CASPubMed Google Scholar
Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature395, 89–93 (1998). CASPubMed Google Scholar
Chan, M. F. et al. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells. Mol. Cell. Biol.21, 7587–7600 (2001). CASPubMedPubMed Central Google Scholar
Kass, S. U., Landsberger, N. & Wolffe, A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol.7, 157–165 (1997). CASPubMed Google Scholar
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet.30, 167–174 (2002). CASPubMed Google Scholar
Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell20, 85–93 (1980).This paper was the first to show that 5-azacytidine can induce demethylation of DNA. CASPubMed Google Scholar
Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4, 529–540 (1999). CASPubMed Google Scholar
Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev.12, 599–606 (1998). CASPubMed Google Scholar
Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol.3, 114–120 (2001). CASPubMed Google Scholar
Bird, A. P. & Wolffe, A. P. Methylation-induced repression – belts, braces, and chromatin. Cell99, 451–454 (1999). CASPubMed Google Scholar
Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187–191 (1998). CASPubMed Google Scholar
Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet.23, 58–61 (1999). CASPubMed Google Scholar
Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet.23, 62–66 (1999).References51–53were the first to link DNA methylation with gene silencing by identifying the chromatin-remodelling proteins with which methylcytosine-binding proteins associate. CASPubMed Google Scholar
Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature405, 482–485 (2000). CASPubMed Google Scholar
Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature405, 486–489 (2000). CASPubMed Google Scholar
Mikovits, J. A. et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production. Mol. Cell. Biol.18, 5166–5177 (1998). CASPubMedPubMed Central Google Scholar
Graff, J. R., Herman, J. G., Myohanen, S., Baylin, S. B. & Vertino, P. M. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J. Biol. Chem.272, 22322–22329 (1997). CASPubMed Google Scholar
Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B. & Herman, J. G. Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J. Biol. Chem.275, 2727–2732 (2000). CASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001).An important review of the latest thinking on the histone code, which marks and/or establishes regions of transcriptionally repressive versus transcriptionally active chromatin. CASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). CASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). CASPubMed Google Scholar
Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). CASPubMed Google Scholar
Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15, 2343–2360 (2001). CASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). CASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002).References64and65provide the exciting concept that a specific site of histone methylation might specify where DNA methylation occurs. CASPubMed Google Scholar
Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet.21, 103–107 (1999).This paper illustrates the synergy between DNA methylation and histone deacetylation in the aberrant silencing of tumour-suppressor genes and the dominant role of DNA methylation. CASPubMed Google Scholar
Nguyen, C. T., Gonzales, F. A. & Jones, P. A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res.29, 4598–4606 (2001). CASPubMedPubMed Central Google Scholar
Magdinier, F. & Wolffe, A. P. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc. Natl Acad. Sci. USA98, 4990–4995 (2001). CASPubMedPubMed Central Google Scholar
El-Osta, A., Kantharidis, P., Zalcberg, J. R. & Wolffe, A. P. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol. Cell. Biol.22, 1844–1857 (2002). CASPubMedPubMed Central Google Scholar
Robertson, K. D. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res.27, 2291–2298 (1999). CASPubMedPubMed Central Google Scholar
De Marzo, A. M. et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res.59, 3855–3860 (1999). CASPubMed Google Scholar
Wu, J. et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl Acad. Sci. USA90, 8891–8895 (1993). CASPubMedPubMed Central Google Scholar
Bakin, A. V. & Curran, T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science283, 387–390 (1999). CASPubMed Google Scholar
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995).This paper presented a role for DNMT1 in tumorigenesis and the concept that decreasing the action of this enzyme could be a therapeutic goal for treating cancer. CASPubMed Google Scholar
Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet.24, 88–91 (2000). CASPubMed Google Scholar
Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet.25, 338–342 (2000). CASPubMed Google Scholar
Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet.25, 269–277 (2000). CASPubMed Google Scholar
Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J.20, 2536–2544 (2001). CASPubMedPubMed Central Google Scholar
Bachman, K. E., Rountree, M. R. & Baylin, S. B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem.276, 32282–32287 (2001).References75–79report that mammalian DNMTs probably have additional roles in transcriptional silencing by recruiting histone deacetylases, acting as transcriptional repressors and serving as binding platforms for transcriptional co-repressors. CASPubMed Google Scholar
Taddei, A., Roche, D., Sibarita, J. B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol.147, 1153–1166 (1999). CASPubMedPubMed Central Google Scholar
Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol.22, 480–491 (2002). CASPubMedPubMed Central Google Scholar
Velicescu, M. et al. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res.62, 2378–2384 (2002). CASPubMed Google Scholar
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295, 1079–1082 (2002). CASPubMed Google Scholar
Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature404, 1003–1007 (2000). CASPubMed Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002).References83–85report that the DNMTs might act cooperatively in maintaining aberrant gene silencing. Reference85provides evidence for epigenetics in the silencing of the tumour-suppressor geneCDKN2A. CASPubMed Google Scholar
Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev.10, 1991–2002 (1996). CASPubMed Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet.27, 31–39 (2001). CASPubMed Google Scholar
Sun, F. L. & Elgin, S. C. Putting boundaries on silence. Cell99, 459–462 (1999). CASPubMed Google Scholar
Turker, M. S. & Bestor, T. H. Formation of methylation patterns in the mammalian genome. Mutat. Res.386, 119–130 (1997). CASPubMed Google Scholar
Issa, J. P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet.7, 536–540 (1994). CASPubMed Google Scholar
Issa, J. P. Aging, DNA methylation and cancer. Crit. Rev. Oncol. Hematol.32, 31–43 (1999).Papers 90 and 91 discuss a possible link between aberrant DNA methylation, ageing and cancer. CASPubMed Google Scholar
Cairns, J. Cancer: Science and Society (W. H. Freeman & Co., San Francisco, California, 1978). Google Scholar
Cameron, E. E., Baylin, S. B. & Herman, J. G. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood94, 2445–2451 (1999). CASPubMed Google Scholar
Greller, L. D., Tobin, F. L. & Poste, G. Tumor heterogeneity and progression: conceptual foundations for modeling. Invasion Metastasis16, 177–208 (1996). CASPubMed Google Scholar
Fidler, I. J. The biology of cancer metastasis, or 'you cannot fix it if you do not know how it works'. Bioessays13, 551–554 (1991). CASPubMed Google Scholar
Nuovo, G. J., Plaia, T. W., Belinsky, S. A., Baylin, S. B. & Herman, J. G. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc. Natl Acad. Sci. USA96, 12754–12759 (1999). CASPubMedPubMed Central Google Scholar
Wong, D. J., Foster, S. A., Galloway, D. A. & Reid, B. J. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol. Cell. Biol.19, 5642–5651 (1999). CASPubMedPubMed Central Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998). CASPubMed Google Scholar
Issa, J. P., Ahuja, N., Toyota, M., Bronner, M. P. & Brentnall, T. A. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res.61, 3573–3577 (2001). CASPubMed Google Scholar
Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell7, 1267–1278 (2001). CASPubMed Google Scholar
Mareel, M., Bracke, M. & Van Roy, F. Cancer metastasis: negative regulation by an invasion-suppressor complex. Cancer Detect. Prev.19, 451–464 (1995). CASPubMed Google Scholar
Cihak, A. Biological effects of 5-azacytidine in eukaryotes. Oncology30, 405–422 (1974). CASPubMed Google Scholar
Lubbert, M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr. Top. Microbiol. Immunol.249, 135–164 (2000). CASPubMed Google Scholar
Lin, X. et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res.61, 8611–8616 (2001). CASPubMed Google Scholar
Wolf, S. F. & Migeon, B. R. Studies of X chromosome DNA methylation in normal human cells. Nature295, 667–671 (1982). CASPubMed Google Scholar
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive X human chromosome: evidence for X inactivation by DNA methylation. Science211, 393–396 (1981). CASPubMed Google Scholar
Jaenisch, R., Schnieke, A. & Harbers, K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl Acad. Sci. USA82, 1451–1455 (1985). CASPubMedPubMed Central Google Scholar
Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F. & Thykjaer, T. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res.62, 961–966 (2002). CASPubMed Google Scholar
Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). CASPubMed Google Scholar
Bender, C. M. et al. Roles of cell division and gene transcription in the methylation of CpG islands. Mol. Cell. Biol.19, 6690–6698 (1999). CASPubMedPubMed Central Google Scholar
Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer2, 210–219 (2002). CAS Google Scholar
Esteller, M., Corn, P. G., Baylin, S. B. & Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res.61, 3225–3229 (2001). CASPubMed Google Scholar
Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res.30, e21 (2002). PubMedPubMed Central Google Scholar