Anstee, Q. M., McPherson, S. & Day, C. P. How big a problem is non-alcoholic fatty liver disease? BMJ343, d3897 (2011). ArticlePubMed Google Scholar
Sanyal, A. J. & American Gastroenterological Association. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology123, 1705–1725 (2002). ArticlePubMed Google Scholar
Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol.10, 330–344 (2013). ArticleCASPubMed Google Scholar
Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol.53, 372–384 (2010). ArticlePubMed Google Scholar
Das, K. et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology51, 1593–1602 (2010). ArticleCASPubMed Google Scholar
Cobbold, J. F., Anstee, Q. M. & Taylor-Robinson, S. D. The importance of fatty liver disease in clinical practice. Proc. Nutr. Soc. 1–10 (2010).
Musso, G., Gambino, R., Cassader, M. & Pagano, G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med.43, 617–649 (2011). ArticlePubMed Google Scholar
Minervini, M. I. et al. Liver biopsy findings from healthy potential living liver donors: reasons for disqualification, silent diseases and correlation with liver injury tests. J. Hepatol.50, 501–510 (2009). ArticlePubMed Google Scholar
Nadalin, S. et al. Preoperative donor liver biopsy for adult living donor liver transplantation: risks and benefits. Liver Transpl.11, 980–986 (2005). ArticlePubMed Google Scholar
Tran, T. T. et al. Living donor liver transplantation: histological abnormalities found on liver biopsies of apparently healthy potential donors. J. Gastroenterol. Hepatol.21, 381–383 (2006). ArticlePubMed Google Scholar
Ryan, C. K., Johnson, L. A., Germin, B. I. & Marcos, A. One hundred consecutive hepatic biopsies in the workup of living donors for right lobe liver transplantation. Liver Transpl.8, 1114–1122 (2002). ArticlePubMed Google Scholar
Browning, J. D. et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology40, 1387–1395 (2004). ArticlePubMed Google Scholar
Szczepaniak, L. S. et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab.288, E462–E468 (2005). ArticleCASPubMed Google Scholar
Bellentani, S., Bedogni, G., Miglioli, L. & Tiribelli, C. The epidemiology of fatty liver. Eur. J. Gastroenterol. Hepatol.16, 1087–1093 (2004). ArticlePubMed Google Scholar
Argo, C. K. & Caldwell, S. H. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis.13, 511–531 (2009). ArticlePubMed Google Scholar
Targher, G. et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care30, 1212–1218 (2007). ArticlePubMed Google Scholar
Jimba, S. et al. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med.22, 1141–1145 (2005). ArticleCASPubMed Google Scholar
Williams, C. D. et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology140, 124–131 (2011). ArticlePubMed Google Scholar
Williamson, R. M. et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care34, 1139–1144 (2011). ArticlePubMedPubMed Central Google Scholar
Hirschhorn, J. N. & Gajdos, Z. K. Genome-wide association studies: results from the first few years and potential implications for clinical medicine. Annu. Rev. Med.62, 11–24 (2011). ArticleCASPubMed Google Scholar
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004).
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118, 1590–1605 (2008). ArticleCASPubMedPubMed Central Google Scholar
International HapMap Consortium. The International HapMap Project. Nature426, 789–796 (2003).
International HapMap Consortium. A haplotype map of the human genome. Nature437, 1299–1320 (2005).
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449, 851–861 (2007). ArticleCASPubMed Google Scholar
Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet.17, 502–510 (2001). ArticleCASPubMed Google Scholar
Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet.6, 109–118 (2005). ArticleCASPubMed Google Scholar
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet.33, 177–182 (2003). ArticleCASPubMed Google Scholar
Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nat. Rev. Genet.2, 91–99 (2001). ArticleCASPubMed Google Scholar
Hirschhorn, J. N. Genomewide association studies—illuminating biologic pathways. N. Engl. J. Med.360, 1699–1701 (2009). ArticleCASPubMed Google Scholar
Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6, 95–108 (2005). ArticleCASPubMed Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
McCarthy, M. I. & Hirschhorn, J. N. Genome-wide association studies: past, present and future. Hum. Mol. Genet.17, R100–R101 (2008). ArticleCASPubMed Google Scholar
Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet.83, 520–528 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet.43, 1131–1138 (2011). ArticleCASPubMedPubMed Central Google Scholar
Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet.41, 816–819 (2009). ArticleCASPubMed Google Scholar
Buch, S. et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet.39, 995–999 (2007). ArticleCASPubMed Google Scholar
Hirschfield, G. M. et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med.360, 2544–2555 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, X. et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat. Genet.42, 658–660 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mells, G. F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet.43, 329–332 (2011). ArticleCASPubMedPubMed Central Google Scholar
Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet.40, 1461–1465 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chalasani, N. et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology139, 1567–1576 (2010). ArticlePubMed Google Scholar
Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet.7, e1001324 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kamatani, Y. et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet.41, 591–595 (2009). ArticleCASPubMed Google Scholar
Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature461, 399–401 (2009). ArticleCASPubMed Google Scholar
Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet.41, 1100–1104 (2009). ArticleCASPubMed Google Scholar
Miele, L. et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology135, 282–291 (2008). ArticleCASPubMed Google Scholar
Anstee, Q. M. et al. Genome-wide association analysis confirms importance of PNPLA3 and identifies novel variants associated with histologically progressive fibrosing steatohepatitis in NAFLD [abstract 146]. Hepatology56 (Suppl. 1), 265A (2012). Google Scholar
Kawaguchi, T. et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS ONE7, e38322 (2012). ArticleCASPubMedPubMed Central Google Scholar
Feitosa, M. F. et al. The ERLIN1_–_CHUK_–_CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis228, 175–180 (2013). ArticleCASPubMedPubMed Central Google Scholar
Victor, R. G. et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol.93, 1473–1480 (2004). ArticlePubMed Google Scholar
Cobbold, J. F. et al. Phenotyping murine models of non-alcoholic fatty liver disease through metabolic profiling of intact liver tissue. Clin. Sci. (Lond.)116, 403–413 (2009). ArticleCAS Google Scholar
Siegelman, E. S. & Rosen, M. A. Imaging of hepatic steatosis. Semin. Liver Dis.21, 71–80 (2001). ArticleCASPubMed Google Scholar
Romeo, S., Huang-Doran, I., Baroni, M. G. & Kotronen, A. Unravelling the pathogenesis of fatty liver disease: patatin-like phospholipase domain-containing 3 protein. Curr. Opin. Lipidol.21, 247–252 (2010). ArticleCASPubMed Google Scholar
Gorden, A. et al. Genetic variation at NCAN locus is associated with inflammation and fibrosis in non-alcoholic fatty liver disease in morbid obesity. Hum. Hered.75, 34–43 (2013). ArticleCASPubMed Google Scholar
Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet.40, 189–197 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology41, 1313–1321 (2005). ArticlePubMed Google Scholar
Ballestri, S., Day, C. P. & Daly, A. K. Polymorphism in the farnesyl diphosphate farnesyl transferase 1 gene and nonalcoholic fatty liver disease severity. Gastroenterology140, 1694–1695 (2011). ArticlePubMed Google Scholar
Kitamoto, T. et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum. Genet.132, 783–792 (2013). ArticleCASPubMed Google Scholar
Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology116, 1413–1419 (1999). ArticleCASPubMed Google Scholar
Saadeh, S. et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology123, 745–750 (2002). ArticlePubMed Google Scholar
Schwenzer, N. F. et al. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J. Hepatol.51, 433–445 (2009). ArticlePubMed Google Scholar
Dasarathy, S. et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J. Hepatol.51, 1061–1067 (2009). ArticlePubMedPubMed Central Google Scholar
Mofrad, P. et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology37, 1286–1292 (2003). ArticlePubMed Google Scholar
Vernon, G., Baranova, A. & Younossi, Z. M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther.34, 274–285 (2011). ArticleCASPubMed Google Scholar
Armstrong, M. J. et al. Presence and severity of non-alcoholic fatty liver disease in a large prospective primary care cohort. J. Hepatol.56, 234–240 (2012). ArticlePubMed Google Scholar
Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet.41, 47–55 (2009). ArticleCASPubMed Google Scholar
Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet.40, 161–169 (2008). ArticleCASPubMedPubMed Central Google Scholar
Valenti, L. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology51, 1209–1217 (2010). ArticleCASPubMed Google Scholar
Kotronen, A. et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia52, 1056–1060 (2009). ArticleCASPubMed Google Scholar
Sookoian, S. et al. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J. Lipid Res.50, 2111–2116 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kantartzis, K. et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes58, 2616–2623 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rotman, Y., Koh, C., Zmuda, J. M., Kleiner, D. E. & Liang, T. J. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology52, 894–903 (2010). ArticleCASPubMed Google Scholar
Romeo, S. et al. The 148M allele of the PNPLA3 gene is associated with indices of liver damage early in life. J. Hepatol.53, 335–338 (2010). ArticleCASPubMed Google Scholar
Valenti, L. et al. I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease. Hepatology52, 1274–1280 (2010). ArticleCASPubMed Google Scholar
Santoro, N. et al. A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology52, 1281–1290 (2010). ArticleCASPubMed Google Scholar
Kollerits, B. et al. A common variant in the adiponutrin gene influences liver enzyme values. J. Med. Genet.47, 116–119 (2010). ArticleCASPubMed Google Scholar
Liu, Y.-L. et al. Carriage of PNPLA3 I148M is associated with an increased risk of non-alcoholic fatty liver diesease associated hepatocellular carcinoma [abstract 1275]. J. Hepatol.58, S516 (2013). Article Google Scholar
Hassan, M. M. et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol. Carcinog.http://dx.doi.org/10.1002/mc.22057.
Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science306, 1383–1386 (2004). ArticleCASPubMed Google Scholar
Rydel, T. J. et al. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry42, 6696–6708 (2003). ArticleCASPubMed Google Scholar
He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem.285, 6706–6715 (2010). ArticleCASPubMed Google Scholar
Romeo, S. et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. Int. J. Obes. (Lond.)34, 190–194 (2010). ArticleCAS Google Scholar
Speliotes, E. K., Butler, J. L., Palmer, C. D., Voight, B. F. & Hirschhorn, J. N. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology52, 904–912 (2010). ArticleCASPubMed Google Scholar
Huang, Y., Cohen, J. C. & Hobbs, H. H. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J. Biol. Chem.286, 37085–37093 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pirazzi, C. et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol.57, 1276–1282 (2012). ArticleCASPubMed Google Scholar
Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem.279, 48968–48975 (2004). ArticleCASPubMed Google Scholar
Kumari, M. et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab.15, 691–702 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wilson, P. A., Gardner, S. D., Lambie, N. M., Commans, S. A. & Crowther, D. J. Characterization of the human patatin-like phospholipase family. J. Lipid Res.47, 1940–1949 (2006). ArticleCASPubMed Google Scholar
Hoekstra, M. et al. The expression level of non-alcoholic fatty liver disease-related gene PNPLA3 in hepatocytes is highly influenced by hepatic lipid status. J. Hepatol.52, 244–251 (2010). ArticleCASPubMed Google Scholar
Lake, A. C. et al. Expression, regulation, and triglyceride hydrolase activity of adiponutrin family members. J. Lipid Res.46, 2477–2487 (2005). ArticleCASPubMed Google Scholar
Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology52, 1134–1142 (2010). ArticleCASPubMed Google Scholar
Basantani, M. K. et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res.52, 318–329 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, J. Z. et al. Chronic overexpression of PNPLA3 I148M in mouse liver causes hepatic steatosis. J. Clin. Invest.122, 4130–4144 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol.87, 1–16 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology45, 1366–1374 (2007). ArticleCASPubMed Google Scholar
Malhi, H., Gores, G. J. & Lemasters, J. J. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology43, S31–S44 (2006). ArticleCASPubMed Google Scholar
Anstee, Q. M. et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol.53, 542–550 (2010). ArticleCASPubMed Google Scholar
Farrell, G. C. et al. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J. Gastroenterol. Hepatol.24, 443–452 (2009). ArticleCASPubMed Google Scholar
Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest.117, 539–548 (2007). ArticleCASPubMedPubMed Central Google Scholar
Spielman, R. S. & Ewens, W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet.59, 983–989 (1996). CASPubMedPubMed Central Google Scholar
Tan, H. L. et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J. Gastroenterol.http://dx.doi.org/10.1007/s00535-013-0850-x.
Palmer, N. D. et al. Characterization of european ancestry nonalcoholic fatty liver disease-associated variants in individuals of african and hispanic descent. Hepatology58, 966–975 (2013). ArticleCASPubMed Google Scholar
Namikawa, C. et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J. Hepatol.40, 781–786 (2004). ArticleCASPubMed Google Scholar
Al-Serri, A. et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J. Hepatol.56, 448–454 (2012). ArticleCASPubMed Google Scholar
Dong, H. et al. The phosphatidylethanolamine _N_-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population. J. Hepatol.46, 915–920 (2007). ArticleCASPubMed Google Scholar
Song, J. et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J.19, 1266–1271 (2005). ArticleCASPubMed Google Scholar
Yoneda, M. et al. Association between angiotensin II type 1 receptor polymorphisms and the occurrence of nonalcoholic fatty liver disease. Liver Int.29, 1078–1085 (2009). ArticleCASPubMed Google Scholar
Zain, S. M. et al. Susceptibility and gene interaction study of the angiotensin II type 1 receptor (AGTR1) gene polymorphisms with non-alcoholic fatty liver disease in a multi-ethnic population. PLoS ONE8, e58538 (2013). ArticleCASPubMedPubMed Central Google Scholar
Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res.65, 1213–1222 (2005). ArticleCASPubMed Google Scholar
Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet.18, 4081–4088 (2009). ArticleCASPubMedPubMed Central Google Scholar
Santoro, N. et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology55, 781–789 (2011). ArticleCASPubMed Google Scholar
Valenti, L., Alisi, A. & Nobili, V. Unraveling the genetics of fatty liver in obese children: Additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology55, 661–663 (2012). ArticlePubMed Google Scholar
Ratziu, V. et al. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc. Natl Acad. Sci. USA95, 9500–9505 (1998). ArticleCASPubMedPubMed Central Google Scholar
Starkel, P. et al. Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats. J. Hepatol.39, 538–546 (2003). ArticleCASPubMed Google Scholar
Bechmann, L. P. et al. Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology55, 1083–1093 (2012). ArticleCASPubMed Google Scholar
Oakley, F. et al. Angiotensin II activates IκB kinase phosphorylation of RelA at Ser536 to promote myofibroblast survival and liver fibrosis. Gastroenterology136, 2334–2344 (2009). ArticleCASPubMed Google Scholar
Dixon, J. B. et al. Pro-fibrotic polymorphisms predictive of advanced liver fibrosis in the severely obese. J. Hepatol.39, 967–971 (2003). ArticleCASPubMed Google Scholar
Yokohama, S. et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology40, 1222–1225 (2004). ArticleCASPubMed Google Scholar
Ginsberg, H. N. et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J. Clin. Invest.78, 1287–1295 (1986). ArticleCASPubMedPubMed Central Google Scholar
Kozlitina, J., Boerwinkle, E., Cohen, J. C. & Hobbs, H. H. Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance. Hepatology53, 467–474 (2011). ArticleCASPubMed Google Scholar
Valenti, L. et al. The APOC3 T–455C and C–482T promoter region polymorphisms are not associated with the severity of liver damage in patients with nonalcoholic fatty liver. J. Hepatol.55, 1409–1414 (2012). ArticleCAS Google Scholar
Verrijken, A. et al. A gene variant of PNPLA3, but not of APOC3, is associated with histological parameters of NAFLD in an obese population. Obesity (Silver Spring)http://dx.doi.org/10.1002/oby.20366.
Sentinelli, F. et al. Lack of effect of apolipoprotein C3 polymorphisms on indices of liver steatosis, lipid profile and insulin resistance in obese Southern Europeans. Lipids Health Dis.10, 93 (2011). ArticleCASPubMedPubMed Central Google Scholar
Willner, I. R. et al. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am. J. Gastroenterol.96, 2957–2961 (2001). ArticleCASPubMed Google Scholar
Struben, V. M., Hespenheide, E. E. & Caldwell, S. H. Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds. Am. J. Med.108, 9–13 (2000). ArticleCASPubMed Google Scholar
Schwimmer, J. B. et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology136, 1585–1592 (2009). ArticlePubMed Google Scholar
Makkonen, J., Pietilainen, K. H., Rissanen, A., Kaprio, J. & Yki-Jarvinen, H. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J. Hepatol.50, 1035–1042 (2009). ArticleCASPubMed Google Scholar
Browning, J. D., Kumar, K. S., Saboorian, M. H. & Thiele, D. L. Ethnic differences in the prevalence of cryptogenic cirrhosis. Am. J. Gastroenterol.99, 292–298 (2004). ArticlePubMed Google Scholar
Guerrero, R., Vega, G. L., Grundy, S. M. & Browning, J. D. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology49, 791–801 (2009). ArticlePubMed Google Scholar
Bambha, K. et al. Ethnicity and nonalcoholic fatty liver disease. Hepatology55, 769–780 (2012). ArticleCASPubMed Google Scholar
Perttila, J. et al. PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am. J. Phys. Endo. Met.302, E1063–E1069 (2012). CAS Google Scholar