Mechanisms of hepatic stellate cell activation (original) (raw)
Trautwein, C., Friedman, S. L., Schuppan, D. & Pinzani, M. Hepatic fibrosis: concept to treatment. J. Hepatol.62, S15–S24 (2015). CASPubMed Google Scholar
Lee, Y. A., Wallace, M. C. & Friedman, S. L. Pathobiology of liver fibrosis: a translational success story. Gut64, 830–841 (2015). CASPubMed Google Scholar
Puche, J. E., Saiman, Y. & Friedman, S. L. Hepatic stellate cells and liver fibrosis. Compr. Physiol.3, 1473–1492 (2013). PubMed Google Scholar
Ellis, E. L. & Mann, D. A. Clinical evidence for the regression of liver fibrosis. J. Hepatol.56, 1171–1180 (2012). PubMed Google Scholar
Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet381, 468–475 (2013). CASPubMed Google Scholar
Chang, T. T. et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology52, 886–893 (2010). CASPubMed Google Scholar
D'Ambrosio, R. et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology56, 532–543 (2012). PubMed Google Scholar
Wake, K. “Sternzellen” in the liver: perisinuosoidal cells with special reference to storage of vitamin A. Am. J. Anat.132, 429–462 (1971). CASPubMed Google Scholar
Friedman, S. L. & Roll, F. J. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal. Biochem.161, 207–218 (1987). CASPubMed Google Scholar
Mederacke, I., Dapito, D. H., Affo, S., Uchinami, H. & Schwabe, R. F. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat. Protoc.10, 305–315 (2015). CASPubMedPubMed Central Google Scholar
Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun.4, 2823 (2013). PubMed Google Scholar
Iwaisako, K. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl Acad. Sci. USA111, E3297–E3305 (2014). CASPubMedPubMed Central Google Scholar
Lemoinne, S., Cadoret, A., Mourabit, H. E., Thabut, D. & Housset, C. Origins and functions of liver myofibroblasts. Biochim. Biophys. Acta1832, 948–954 (2013). CASPubMed Google Scholar
Kluwe, J. et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut60, 1260–1268 (2011). CASPubMed Google Scholar
Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med.19, 1617–1624 (2013). CASPubMed Google Scholar
Yin, C., Evason, K. J., Maher, J. J. & Stainier, D. Y. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology56, 1958–1970 (2012). CASPubMed Google Scholar
Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis.21, 311–335 (2001). CASPubMed Google Scholar
Miyata, E. et al. Hematopoietic origin of hepatic stellate cells in the adult liver. Blood111, 2427–2435 (2008). CASPubMed Google Scholar
Zhang, D. Y. et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut65, 1754–1764 (2016). CASPubMed Google Scholar
Friedman, S. L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem.275, 2247–2250 (2000). CASPubMed Google Scholar
Schnabl, B., Choi, Y. H., Olsen, J. C., Hagedorn, C. H. & Brenner, D. A. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab. Invest.82, 323–333 (2002). CASPubMed Google Scholar
Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest.102, 538–549 (1998). CASPubMedPubMed Central Google Scholar
Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA109, 9448–9453 (2012). CASPubMedPubMed Central Google Scholar
Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology143, 1073–1083.e22 (2012). CASPubMed Google Scholar
Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med.17, 552–553 (2011). CASPubMedPubMed Central Google Scholar
Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo . J. Hepatol.30, 77–87 (1999). CASPubMed Google Scholar
Breitkopf, K., Godoy, P., Ciuclan, L., Singer, M. V. & Dooley, S. TGF-beta/Smad signaling in the injured liver. Z. Gastroenterol.44, 57–66 (2006). CASPubMed Google Scholar
Friedman, S. L. Hepatic stellate cells — protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev.88, 125–172 (2008). CASPubMed Google Scholar
Hanafusa, H. et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem.274, 27161–27167 (1999). CASPubMed Google Scholar
Engel, M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem.274, 37413–37420 (1999). CASPubMed Google Scholar
Wong, L., Yamasaki, G., Johnson, R. J. & Friedman, S. L. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest.94, 1563–1569 (1994). CASPubMedPubMed Central Google Scholar
Pinzani, M. PDGF and signal transduction in hepatic stellate cells. Front. Biosci.7, d1720–d1726 (2002). CASPubMed Google Scholar
Kocabayoglu, P. et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J. Hepatol.63, 141–147 (2015). CASPubMedPubMed Central Google Scholar
Yang, L. et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology146, 1339–1350.e1 (2014). CASPubMed Google Scholar
Kantari-Mimoun, C. et al. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology61, 2042–2055 (2015). CASPubMed Google Scholar
Huang, G. & Brigstock, D. R. Regulation of hepatic stellate cells by connective tissue growth factor. Front. Biosci.17, 2495–2507 (2015). Google Scholar
Chen, L. et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology59, 1118–1129 (2014). CASPubMed Google Scholar
Chen, L., Chen, R., Kemper, S., Charrier, A. & Brigstock, D. R. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. Am. J. Physiol. Gastrointest. Liver Physiol.309, G491–G499 (2015). CASPubMedPubMed Central Google Scholar
Olaso, E. et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J. Clin. Invest.108, 1369–1378 (2001). CASPubMedPubMed Central Google Scholar
Schuppan, D., Ruehl, M., Somasundaram, R. & Hahn, E. G. Matrix as a modulator of hepatic fibrogenesis. Semin. Liver Dis.21, 351–372 (2001). CASPubMed Google Scholar
Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun.7, 12502 (2016). CASPubMedPubMed Central Google Scholar
Ikeda, K. et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J. Biol. Chem.277, 19206–19212 (2002). CASPubMed Google Scholar
Omenetti, A., Choi, S., Michelotti, G. & Diehl, A. M. Hedgehog signaling in the liver. J. Hepatol.54, 366–373 (2011). CASPubMed Google Scholar
Michelotti, G. A. et al. Smoothened is a master regulator of adult liver repair. J. Clin. Invest.123, 2380–2394 (2013). CASPubMedPubMed Central Google Scholar
Syn, W. K. et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology53, 106–115 (2012). Google Scholar
Urtasun, R. et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology55, 594–608 (2012). CASPubMed Google Scholar
Machado, M. V. et al. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut64, 1148–1157 (2015). CASPubMed Google Scholar
Greenbaum, L. E. & Wells, R. G. The role of stem cells in liver repair and fibrosis. Int. J. Biochem. Cell Biol.43, 222–229 (2011). CASPubMed Google Scholar
Swiderska-Syn, M. et al. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut63, 1333–1344 (2014). CASPubMed Google Scholar
Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology58, 1801–1813 (2013). CASPubMed Google Scholar
Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology142, 938–946 (2012). PubMed Google Scholar
Thoen, L. F. et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol.55, 1353–1360 (2011). CASPubMed Google Scholar
Hernandez-Gea, V. et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol.59, 98–104 (2013). CASPubMedPubMed Central Google Scholar
Koo, J. H., Lee, H. J., Kim, W. & Kim, S. G. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2. Gastroenterology150, 181–193.e8 (2016). CASPubMed Google Scholar
Kim, R. S. et al. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci. Rep.6, 39342 (2016). CASPubMedPubMed Central Google Scholar
Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol.26, 431–442 (2008). CASPubMed Google Scholar
Kawasaki, K. et al. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J. Biol. Chem.290, 3639–3646 (2015). CASPubMed Google Scholar
Seki, E., Brenner, D. A. & Karin, M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology143, 307–320 (2012). CASPubMed Google Scholar
Kluwe, J. et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology138, 347–359 (2010). CASPubMed Google Scholar
Zhao, G. et al. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut63, 1159–1172 (2014). CASPubMed Google Scholar
Novo, E. et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. J. Hepatol.54, 964–974 (2011). CASPubMed Google Scholar
Novo, E. & Parola, M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair1, 5 (2008). PubMedPubMed Central Google Scholar
Lan, T., Kisseleva, T. & Brenner, D. A. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS ONE10, e0129743 (2015). PubMedPubMed Central Google Scholar
Jiang, J. X. et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo . Gastroenterology139, 1375–1384 (2010). CASPubMed Google Scholar
Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology56, 2316–2327 (2012). CASPubMed Google Scholar
Tomita, K. et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology59, 154–169 (2014). CASPubMed Google Scholar
Yi, H. S. et al. Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice. Hepatology60, 1044–1053 (2014). CASPubMed Google Scholar
Valenti, L. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology51, 1209–1217 (2010). CASPubMed Google Scholar
Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet.40, 1461–1465 (2008). CASPubMedPubMed Central Google Scholar
Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet.23, 4077–4085 (2014). CASPubMedPubMed Central Google Scholar
Teratani, T. et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology142, 152–164.e10 (2012). CASPubMed Google Scholar
Tomita, K. et al. Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J. Hepatol.61, 98–106 (2014). CASPubMed Google Scholar
Van Rooyen, D. M. et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J. Hepatol.59, 144–152 (2013). CASPubMed Google Scholar
Shafiei, M. S., Shetty, S., Scherer, P. E. & Rockey, D. C. Adiponectin regulation of stellate cell activation via PPARgamma-dependent and -independent mechanisms. Am. J. Pathol.178, 2690–2699 (2011). CASPubMedPubMed Central Google Scholar
Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology125, 1796–1807 (2003). CASPubMed Google Scholar
Coombes, J. D. et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim. Biophys. Acta1862, 135–144 (2016). CASPubMed Google Scholar
Sahai, A. et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am. J. Physiol. Gastrointest. Liver Physiol.287, G1035–G1043 (2004). CASPubMed Google Scholar
Coll, M. et al. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci. Rep.5, 11549 (2015). PubMedPubMed Central Google Scholar
Zhang, Z. et al. The auto-regulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (miR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J. Biol. Chem.http://dx.doi.org/10.1074/jbc.M113.517953 (2013).
Ogawa, T. et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut61, 1600–1609 (2012). CASPubMed Google Scholar
Ji, J. et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett.583, 759–766 (2009). CASPubMed Google Scholar
Hyun, J. et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun.7, 10993 (2016). CASPubMedPubMed Central Google Scholar
Liu, X. Y. et al. Induction of autophagy and apoptosis by miR-148a through the sonic hedgehog signaling pathway in hepatic stellate cells. Am. J. Cancer Res.5, 2569–2589 (2015). CASPubMedPubMed Central Google Scholar
Jung, K. H. et al. Differentiation therapy for hepatocellular carcinoma: multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology63, 864–879 (2016). CASPubMed Google Scholar
Huang, Y. H. et al. Activation of Mir-29a in activated hepatic stellate cells modulates its profibrogenic phenotype through inhibition of histone deacetylases 4. PLoS ONE10, e0136453 (2015). PubMedPubMed Central Google Scholar
Guo, C. J., Pan, Q., Li, D. G., Sun, H. & Liu, B. W. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J. Hepatol.50, 766–778 (2009). CASPubMed Google Scholar
Li, J. et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J. Hepatol.58, 522–528 (2013). CASPubMed Google Scholar
Roderburg, C. et al. miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J. Hepatol.58, 736–742 (2013). CASPubMed Google Scholar
Sekiya, Y. et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J. Cell. Physiol.226, 2535–2542 (2011). CASPubMed Google Scholar
Venugopal, S. K. et al. Liver fibrosis causes down-regulation of miRNA-150 and miRNA-194 in hepatic stellate cells and their over-expression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol.298, G101–G106 (2009). PubMedPubMed Central Google Scholar
Zhou, C. et al. Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins. Genome Med.8, 31 (2016). PubMedPubMed Central Google Scholar
Tian, W. et al. Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-beta signaling. Int. J. Biochem. Cell Biol.71, 35–43 (2016). CASPubMed Google Scholar
Hardy, T. & Mann, D. A. Epigenetics in liver disease: from biology to therapeutics. Gut65, 1895–1905 (2016). CASPubMed Google Scholar
Bian, E. B. et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol. Appl. Pharmacol.264, 13–22 (2012). CASPubMed Google Scholar
Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology138, 705–714 (2010). CASPubMed Google Scholar
Kweon, S. M., Chi, F., Higashiyama, R., Lai, K. & Tsukamoto, H. Wnt pathway stabilizes MeCP2 protein to repress PPAR-gamma in Activation of hepatic stellate cells. PLoS ONE11, e0156111 (2016). PubMedPubMed Central Google Scholar
Seki, E. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med.13, 1324–1332 (2007). CASPubMed Google Scholar
Gabele, E. et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun.376, 271–276 (2008). PubMed Google Scholar
Miura, K. et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology57, 577–589 (2013). CASPubMed Google Scholar
Byun, J. S., Suh, Y. G., Yi, H. S., Lee, Y. S. & Jeong, W. I. Activation of Toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J. Hepatol.58, 342–349 (2013). CASPubMed Google Scholar
Chou, M. H. et al. Selective activation of Toll-like receptor 7 in activated hepatic stellate cells may modulate their profibrogenic phenotype. Biochem. J.447, 25–34 (2012). CASPubMed Google Scholar
Huang, H. et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology46, 297–306 (2007). CASPubMed Google Scholar
Guo, J. et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology49, 960–968 (2009). CASPubMed Google Scholar
Seo, W. et al. Exosome-mediated activation of Toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology64, 616–631 (2016). CASPubMed Google Scholar
Pinzani, M. & Marra, F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis.21, 397–416 (2001). CASPubMed Google Scholar
Jiao, J. et al. Interleukin-15 receptor alpha on hepatic stellate cells regulates hepatic fibrogenesis in mice. J. Hepatol.65, 344–353 (2016). CASPubMedPubMed Central Google Scholar
Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology143, 765–776.e3 (2012). CASPubMed Google Scholar
Chiu, Y. S., Wei, C. C., Lin, Y. J., Hsu, Y. H. & Chang, M. S. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology60, 1003–1014 (2014). CASPubMed Google Scholar
Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology56, 1150–1159 (2012). CASPubMed Google Scholar
Beaven, S. W. et al. Liver x receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology140, 1052–1062 (2011). CASPubMed Google Scholar
O'Mahony, F. et al. Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology62, 615–626 (2015). CASPubMed Google Scholar
Kong, B., Luyendyk, J. P., Tawfik, O. & Guo, G. L. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J. Pharmacol. Exp. Ther.328, 116–122 (2009). CASPubMed Google Scholar
Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet385, 956–965 (2015). CASPubMed Google Scholar
Hazra, S. et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem.279, 11392–11401 (2004). CASPubMed Google Scholar
Moran-Salvador, E. et al. Cell-specific PPARgamma deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J. Hepatol.59, 1045–1053 (2013). CASPubMed Google Scholar
Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl Acad. Sci. USA109, E1369–E1376 (2012). CASPubMedPubMed Central Google Scholar
Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology58, 1941–1952 (2013). CASPubMed Google Scholar
Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology150, 1147–1159.e5 (2016). CASPubMed Google Scholar
Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell153, 601–613 (2013). CASPubMedPubMed Central Google Scholar
Duran, A. et al. p62/SQSTM1 by binding to vitamin d receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell30, 595–609 (2016). CASPubMedPubMed Central Google Scholar
Li, T. et al. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology59, 2383–2396 (2014). CASPubMed Google Scholar
Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat. Med.21, 150–158 (2015). CASPubMed Google Scholar
Teixeira-Clerc, F. et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med.12, 671–676 (2006). CASPubMed Google Scholar
Julien, B. et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology128, 742–755 (2005). CASPubMed Google Scholar
Munoz-Luque, J. et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J. Pharmacol. Exp. Ther.324, 475–483 (2008). CASPubMed Google Scholar
Guillot, A. et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology59, 296–306 (2014). CASPubMed Google Scholar
Granzow, M. et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology60, 334–348 (2014). CASPubMed Google Scholar
Knight, V., Tchongue, J., Lourensz, D., Tipping, P. & Sievert, W. Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology55, 879–887 (2012). CASPubMed Google Scholar
Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology50, 185–197 (2009). CASPubMed Google Scholar
Lefebvre, E. et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS ONE11, e0158156 (2016). PubMedPubMed Central Google Scholar
Ruddell, R. G. et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol.169, 861–876 (2006). CASPubMedPubMed Central Google Scholar
Kim, D. C. et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int.33, 535–543 (2013). CASPubMed Google Scholar
Ebrahimkhani, M. R. et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2B) receptor in chronic liver disease. Nat. Med.17, 1668–1673 (2011). CASPubMedPubMed Central Google Scholar
Li, Y. H., Woo, S. H., Choi, D. H. & Cho, E. H. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem. Biophys. Res. Commun.463, 853–858 (2015). CASPubMed Google Scholar
Li, Y. H. et al. Sirtuin 3 (SIRT3) regulates alpha-smooth muscle actin (alpha-SMA) production through the succinate dehydrogenase-G protein-coupled receptor 91 (GPR91) pathway in hepatic stellate cells. J. Biol. Chem.291, 10277–10292 (2016). CASPubMedPubMed Central Google Scholar
Lopez-Sanchez, I. et al. GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat. Commun.5, 4451 (2014). CASPubMed Google Scholar
Aylon, Y. et al. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev.30, 786–797 (2016). CASPubMedPubMed Central Google Scholar
Moroishi, T., Hansen, C. G. & Guan, K. L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer15, 73–79 (2015). CASPubMedPubMed Central Google Scholar
Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol.63, 679–688 (2015). CASPubMed Google Scholar
Swiderska-Syn, M. et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology64, 232–244 (2016). CASPubMed Google Scholar
Machado, M. V. et al. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J. Hepatol.63, 962–970 (2015). CASPubMedPubMed Central Google Scholar
Wilhelm, A. et al. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut65, 1175–1185 (2016). CASPubMed Google Scholar
Mogler, C. et al. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol. Med.7, 332–338 (2015). CASPubMedPubMed Central Google Scholar
Ding, N. et al. BRD4 is a novel therapeutic target for liver fibrosis. Proc. Natl Acad. Sci. USA112, 15713–15718 (2015). CASPubMedPubMed Central Google Scholar
Henderson, N. C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl Acad. Sci. USA103, 5060–5065 (2006). CASPubMedPubMed Central Google Scholar
Traber, P. G. et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS ONE8, e75361 (2013). CASPubMedPubMed Central Google Scholar
Delgado, I. et al. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology59, 2358–2370 (2014). CASPubMed Google Scholar
Wandzioch, E., Kolterud, A., Jacobsson, M., Friedman, S. L. & Carlsson, L. Lhx2−/− mice develop liver fibrosis. Proc. Natl Acad. Sci. USA101, 16549–16554 (2004). CASPubMedPubMed Central Google Scholar
Arndt, S. et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut64, 973–981 (2015). CASPubMed Google Scholar
Barcena, C. et al. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J. Hepatol.63, 670–678 (2015). CASPubMedPubMed Central Google Scholar
Lafdil, F. et al. Induction of Gas6 protein in CCl4-induced rat liver injury and anti-apoptotic effect on hepatic stellate cells. Hepatology44, 228–239 (2006). CASPubMed Google Scholar
Novo, E. et al. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys.548, 20–37 (2014). CASPubMed Google Scholar
Chung, S. I. et al. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J. Hepatol.64, 618–627 (2016). CASPubMed Google Scholar
Vaughn, B. P., Robson, S. C. & Longhi, M. S. Purinergic signaling in liver disease. Dig. Dis.32, 516–524 (2014). PubMed Google Scholar
Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology59, 898–910 (2014). CASPubMed Google Scholar
McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity39, 357–371 (2013). CASPubMedPubMed Central Google Scholar
Canbay, A. et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest.83, 655–663 (2003). CASPubMed Google Scholar
Zhan, S. S. et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo . Hepatology43, 435–443 (2006). CASPubMed Google Scholar
Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology42, 193–199 (2005). CASPubMed Google Scholar
Seki, S. et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol. Rev.174, 34–46 (2000). Google Scholar
Ju, C. & Pohl, L. R. Tolerogenic role of Kupffer cells in immune-mediated adverse drug reactions. Toxicology209, 109–112 (2005). CASPubMed Google Scholar
Sunami, Y. et al. Hepatic activation of IKK/NFkappaB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatology56, 1117–1128 (2012). CASPubMed Google Scholar
Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest.115, 56–65 (2005). CASPubMedPubMed Central Google Scholar
Pradere, J. P. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology58, 1461–1473 (2013). CASPubMed Google Scholar
Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest.117, 185–194 (2007). CASPubMedPubMed Central Google Scholar
Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology211, 609–618 (2006). CASPubMed Google Scholar
Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology50, 261–274 (2009). CASPubMed Google Scholar
Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol.302, G1310–G1321 (2012). CASPubMedPubMed Central Google Scholar
Berres, M. L. et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J. Clin. Invest.120, 4129–4140 (2010). CASPubMedPubMed Central Google Scholar
Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol.178, 5288–5295 (2007). CASPubMed Google Scholar
Pellicoro, A. et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology55, 1965–1975 (2012). CASPubMed Google Scholar
Taimr, P. et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology37, 87–95 (2003). CASPubMed Google Scholar
Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA109, E3186–E3195 (2012). CASPubMedPubMed Central Google Scholar
Aoyama, T., Inokuchi, S., Brenner, D. A. & Seki, E. CX3CL1–CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology52, 1390–1400 (2010). CASPubMed Google Scholar
Jeong, W. I., Park, O. & Gao, B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology134, 248–258 (2008). CASPubMed Google Scholar
Jeong, W. I. et al. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology53, 1342–1351 (2011). CASPubMed Google Scholar
Glassner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest.92, 967–977 (2012). PubMed Google Scholar
Wang, H. & Yin, S. Natural killer T cells in liver injury, inflammation and cancer. Expert Rev. Gastroenterol. Hepatol.9, 1077–1085 (2015). CASPubMed Google Scholar
Park, O. et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology49, 1683–1694 (2009). CASPubMed Google Scholar
Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J. Immunol.190, 5226–5236 (2013). CASPubMed Google Scholar
Deleve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology48, 920–930 (2008). CASPubMed Google Scholar
Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology142, 918–927.e6 (2012). PubMed Google Scholar
Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature505, 97–102 (2014). PubMed Google Scholar
Kurokawa, T., Zheng, Y. W. & Ohkohchi, N. Novel functions of platelets in the liver. J. Gastroenterol. Hepatol.31, 745–751 (2016). CASPubMed Google Scholar
Nowatari, T., Murata, S., Fukunaga, K. & Ohkohchi, N. Role of platelets in chronic liver disease and acute liver injury. Hepatol. Res.44, 165–172 (2014). CASPubMed Google Scholar
Yoshida, S. et al. Extrahepatic platelet-derived growth factor-beta, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology147, 1378–1392 (2014). CASPubMed Google Scholar
Novobrantseva, T. I. et al. Attenuated liver fibrosis in the absence of B cells. J. Clin. Invest.115, 3072–3082 (2005). CASPubMedPubMed Central Google Scholar
Thapa, M. et al. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology61, 2067–2079 (2015). CASPubMed Google Scholar
Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol.14, 181–194 (2014). CASPubMed Google Scholar
Kendall, T. J. et al. p75 neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology49, 901–910 (2009). CASPubMed Google Scholar
Oh, Y. et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology64, 209–223 (2016). CASPubMed Google Scholar
Murphy, F. R. et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J. Biol. Chem.277, 11069–11076 (2002). CASPubMed Google Scholar
Yoon, Y. J., Friedman, S. L. & Lee, Y. A. Antifibrotic therapies: where are we now? Semin. Liver Dis.36, 87–98 (2016). CASPubMed Google Scholar
Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease — meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology64, 73–84 (2016). PubMed Google Scholar
Lade, A., Noon, L. A. & Friedman, S. L. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr. Opin. Oncol.26, 100–107 (2014). CASPubMedPubMed Central Google Scholar
Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med.362, 1–5 (2010). Google Scholar
Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep.6, 33453 (2016). CASPubMedPubMed Central Google Scholar
Friedman, S. et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp. Clin. Trials47, 356–365 (2016). PubMed Google Scholar
Liu, S. B. et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J.30, 1599–1609 (2016). CASPubMed Google Scholar
Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med.16, 1009–1017 (2010). CASPubMed Google Scholar