- Goodnow, C. C. Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet 357, 2115–2121 (2001).
CAS PubMed Google Scholar
- Lafferty, K. J., Misko, I. S. & Cooley, M. A. Allogeneic stimulation modulates the in vitro response of T cells to transplantation antigen. Nature 249, 275–276 (1974).
CAS PubMed Google Scholar
- Sharpe, A. H. & Freeman, G. J. The B7–CD28 superfamily. Nature Rev. Immunol. 2, 116–126 (2002).
CAS Google Scholar
- Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14, 233–258 (1996).
CAS PubMed Google Scholar
- Shahinian, A. et al. Differential T cell co-stimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993). The first group to describe the CD28 knockout mouse, illustrating that some, but not all, immune responses are affected (see also reference 13).
CAS PubMed Google Scholar
- King, C. L., Xianli, J., June, C. H., Abe, R. & Lee, K. P. CD28-deficient mice generate an impaired TH2 response to Schistosoma mansoni infection. Eur. J. Immunol. 26, 2448–2455 (1996).
CAS PubMed Google Scholar
- Mittrucker, H. W., Kursar, M., Kohler, A., Hurwitz, R. & Kaufmann, S. H. Role of CD28 for the generation and expansion of antigen-specific CD8+ T lymphocytes during infection with Listeria monocytogenes. J. Immunol. 167, 5620–5627 (2001).
CAS PubMed Google Scholar
- Compton, H. L. & Farrell, J. P. CD28 co-stimulation and parasite dose combine to influence the susceptibility of BALB/c mice to infection with Leishmania major. J. Immunol. 168, 1302–1308 (2002).
CAS PubMed Google Scholar
- Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 co-stimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).
Article CAS PubMed Google Scholar
- Via, C. S., Rus, V., Nguyen, P., Linsley, P. & Gause, W. C. Differential effect of CTLA4Ig on murine graft-versus-host disease (GVHD) development: CTLA4Ig prevents both acute and chronic GVHD development but reverses only chronic GVHD. J. Immunol. 157, 4258–4267 (1996).
CAS PubMed Google Scholar
- Kondo, S., Kooshesh, F., Wang, B., Fujisawa, H. & Sauder, D. N. Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28−/− mice. J. Immunol. 157, 4822–4829 (1996).
CAS PubMed Google Scholar
- Krinzman, S. J. et al. Inhibition of T cell co-stimulation abrogates airway hyperresponsiveness in a murine model. J. Clin. Invest. 98, 2693–2699 (1996).
CAS PubMed PubMed Central Google Scholar
- Green, J. M. et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1, 501–508 (1994).
CAS PubMed Google Scholar
- Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).
CAS PubMed Google Scholar
- Gudmundsdottir, H., Wells, A. D. & Turka, L. A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).
CAS PubMed Google Scholar
- Lane, P. et al. B cell function in mice transgenic for mCTLA4-H γ1: lack of germinal centers correlated with poor affinity maturation and class switching despite normal priming of CD4+ T cells. J. Exp. Med. 179, 819–830 (1994).
CAS PubMed Google Scholar
- Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).
CAS PubMed Google Scholar
- Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 co-stimulation promotes the production of TH2 cytokines. J. Immunol. 158, 658–665 (1997).
CAS PubMed Google Scholar
- Schweitzer, A. N., Borriello, F., Wong, R. C., Abbas, A. K. & Sharpe, A. H. Role of co-stimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86. J. Immunol. 158, 2713–2722 (1997).
CAS PubMed Google Scholar
- Prilliman, K. R. et al. Cutting edge: a crucial role for B7-CD28 in transmitting T help from APC to CTL. J. Immunol. 169, 4094–4097 (2002).
CAS PubMed Google Scholar
- Borriello, F. et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).
CAS PubMed Google Scholar
- McAdam, A. J., Schweitzer, A. N. & Sharpe, A. H. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol. Rev. 165, 231–247 (1998).
CAS PubMed Google Scholar
- Kane, L. P., Lin, J. & Weiss, A. It's all Rel-ative: NF-κB and CD28 co-stimulation of T-cell activation. Trends Immunol. 23, 413–420 (2002). A review of co-stimulation on nuclear factor-κB (NF-κB) activation.
CAS PubMed Google Scholar
- Michel, F. et al. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. J. Immunol. 165, 3820–3829 (2000).
CAS PubMed Google Scholar
- Diehn, M. et al. Genomic expression programs and the integration of the CD28 co-stimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA 99, 11796–11801 (2002). A microarray study showing that CD28 augments the level of expression of genes targeted by T-cell receptor (TCR)-induced activation: a support to a quantitative view of co-stimulation (see also reference 62).
CAS PubMed PubMed Central Google Scholar
- Rincon, M. & Flavell, R. AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes. EMBO J. 13, 4370–4381 (1994).
CAS PubMed PubMed Central Google Scholar
- Zuckerman, L. A., Pullen, L. & Miller, J. Functional consequences of co-stimulation by ICAM-1 on IL-2 gene expression and T cell activation. J. Immunol. 160, 3259–3268 (1998).
CAS PubMed Google Scholar
- Zhou, X. Y. et al. Molecular mechanisms underlying differential contribution of CD28 versus non-CD28 co-stimulatory molecules to IL-2 promoter activation. J. Immunol. 168, 3847–3854 (2002).
CAS PubMed Google Scholar
- Green, J. M., Karpitskiy, V., Kimzey, S. L. & Shaw, A. S. Coordinate regulation of T cell activation by CD2 and CD28. J. Immunol. 164, 3591–3595 (2000).
CAS PubMed Google Scholar
- Van Der Merwe, P. A. & Davis, S. J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003). A review on the biophysical basis of immunoreceptor recognition.
CAS PubMed Google Scholar
- Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).
CAS PubMed PubMed Central Google Scholar
- Herold, K. C. et al. Regulation of C-C chemokine production by murine T cells by CD28/B7 co-stimulation. J. Immunol. 159, 4150–4153 (1997).
CAS PubMed Google Scholar
- Park, W. R. et al. CD28 co-stimulation is required not only to induce IL-12 receptor but also to render janus kinases/STAT4 responsive to IL-12 stimulation in TCR-triggered T cells. Eur. J. Immunol. 31, 1456–1464 (2001).
CAS PubMed Google Scholar
- Walker, L. S., Gulbranson-Judge, A., Flynn, S., Brocker, T. & Lane, P. J. Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol. Today 21, 333–337 (2000).
CAS PubMed Google Scholar
- Reichert, P., Reinhardt, R. L., Ingulli, E. & Jenkins, M. K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).
CAS PubMed Google Scholar
- Bonnevier, J. L. & Mueller, D. L. Cutting Edge: B7/CD28 interactions regulate cell cycle progression independent of the strength of TCR signaling. J. Immunol. 169, 6659–6663 (2002).
CAS PubMed Google Scholar
- Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061 (1993).
CAS PubMed Google Scholar
- Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. P. γ chain required for naive CD4+ T cell survival but not for antigen proliferation. Nature Immunol. 1, 54–58 (2000).
CAS Google Scholar
- Appleman, L. J., Berezovskaya, A., Grass, I. & Boussiotis, V. A. CD28 co-stimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J. Immunol. 164, 144–151 (2000).
CAS PubMed Google Scholar
- Ho, A. & Dowdy, S. F. Regulation of G1 cell-cycle progression by oncogenes and tumor suppressor genes. Curr. Opin. Genet. Dev. 12, 47–52 (2002).
CAS PubMed Google Scholar
- Boonen, G. J. et al. CD28 induces cell cycle progression by IL-2-independent downregulation of p27kip1 expression in human peripheral T lymphocytes. Eur. J. Immunol. 29, 789–798 (1999).
CAS PubMed Google Scholar
- Kovalev, G. I., Franklin, D. S., Coffield, V. M., Xiong, Y. & Su, L. An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation. J. Immunol. 167, 3285–3292 (2001).
CAS PubMed Google Scholar
- Lea, N. C. et al. Commitment point during G0—>G1 that controls entry into the cell cycle. Mol. Cell Biol. 23, 2351–2361 (2003).
CAS PubMed PubMed Central Google Scholar
- Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).
CAS PubMed Google Scholar
- Appleman, L. J., van Puijenbroek, A. A., Shu, K. M., Nadler, L. M. & Boussiotis, V. A. CD28 co-stimulation mediates downregulation of p27kip1 and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J. Immunol. 168, 2729–2736 (2002).
CAS PubMed Google Scholar
- Polymenis, M. & Schmidt, E. V. Coordination of cell growth with cell division. Curr. Opin. Genet. Dev. 9, 76–80 (1999).
CAS PubMed Google Scholar
- Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).
CAS PubMed Google Scholar
- Sears, R. C. & Nevins, J. R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277, 11617–11620 (2002).
CAS PubMed Google Scholar
- Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).
CAS PubMed Google Scholar
- Rathmell, J. C. & Thompson, C. B. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109, S97–S107 (2002).
CAS PubMed Google Scholar
- Gett, A. V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nature Immunol. 4, 355–360 (2003).
CAS Google Scholar
- Noel, P. J., Boise, L. H., Green, J. M. & Thompson, C. B. CD28 co-stimulation prevents cell death during primary T cell activation. J. Immunol. 157, 636–642 (1996).
CAS PubMed Google Scholar
- Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).
CAS PubMed Google Scholar
- Boise, L. H. et al. CD28 co-stimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).
CAS PubMed Google Scholar
- Khoshnan, A. et al. The NF-κB cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J. Immunol. 165, 1743–1754 (2000).
CAS PubMed Google Scholar
- Wan, Y. Y. & DeGregori, J. The survival of antigen-stimulated T cells requires NF-κB-mediated inhibition of p73 expression. Immunity 18, 331–342 (2003).
CAS PubMed Google Scholar
- Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).
CAS Google Scholar
- Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).
CAS Google Scholar
- Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).
CAS PubMed Google Scholar
- Ben-Sasson, S. Z., Gerstel, R., Hu-Li, J. & Paul, W. E. Cell division is not a 'clock' measuring acquisition of competence to produce IFN-γ or IL-4. J. Immunol. 166, 112–120 (2001).
CAS PubMed Google Scholar
- Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nature Immunol. 2, 45–50 (2001).
CAS Google Scholar
- Riley, J. L. et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl Acad. Sci. USA 99, 11790–11795 (2002).
CAS PubMed PubMed Central Google Scholar
- Oosterwegel, M. A. et al. The role of CTLA-4 in regulating TH2 differentiation. J. Immunol. 163, 2634–2639 (1999).
CAS PubMed Google Scholar
- Bour-Jordan, H. et al. CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment. Nature Immunol. 4, 182–188 (2003).
CAS Google Scholar
- Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).
CAS PubMed Google Scholar
- Attema, J. L. et al. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. J. Immunol. 169, 2466–2476 (2002).
CAS PubMed Google Scholar
- Grogan, J. L. & Locksley, R. M. T helper cell differentiation: on again, off again. Curr. Opin. Immunol. 14, 366–372 (2002).
CAS PubMed Google Scholar
- Rao, S., Gerondakis, S., Woltring, D. & Shannon, M. F. c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J. Immunol. 170, 3724–3731 (2003).
CAS PubMed Google Scholar
- Bruniquel, D. & Schwartz, R. H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature Immunol. 4, 235–240 (2003) The authors provided the first evidence of stable demethylation of a TCR/CD28-targeted gene minutes after triggering.
CAS Google Scholar
- Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002).
CAS Google Scholar
- Acuto, O., Omata-Mise, S., Mangino, G. & Michel, F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 co-stimulatory receptor. Immunol. Rev. 192, 1–11 (2003).
Google Scholar
- Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).
CAS PubMed Google Scholar
- Ward, S. CD28: a signaling perspective. Biochem. J. 318, 361–377 (1996).
CAS PubMed PubMed Central Google Scholar
- Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).
CAS PubMed PubMed Central Google Scholar
- Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nature Immunol. 4, 189–197 (2003).
CAS Google Scholar
- Michel, F., Attal-Bonnefoy, G., Mangino, G., Mise-Omata, S. & Acuto, O. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15, 935–945 (2001). This paper provides evidence that CD28 signalling amplifies a cyclosporin-dependent pathway by activating a TEC protein tyrosine kinase (PTK) with consequent activation of phospholipase C-γ1 (PLC-γ1) and increase in calcium concentration. It supports the view that co-stimulation directly augments TCR-signalling capability (see also reference 125).
CAS PubMed Google Scholar
- Dower, N. A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317–321 (2000).
CAS Google Scholar
- Ward, S. G. & Cantrell, D. A. Phosphoinositide 3-kinases in T lymphocyte activation. Curr. Opin. Immunol. 13, 332–338 (2001).
CAS PubMed Google Scholar
- Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).
CAS PubMed Google Scholar
- Rudd, C. E. Upstream-downstream: CD28 cosignal pathways and T cell function. Immunity 4, 527–534 (1996).
CAS PubMed Google Scholar
- Yang, W. C., Ghiotto, M., Barbarat, B. & Olive, D. The role of Tec protein-tyrosine kinase in T cell signaling. J. Biol. Chem. 274, 607–617 (1999).
CAS PubMed Google Scholar
- August, A. et al. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc. Natl Acad. Sci. USA 91, 9347–9351 (1994).
CAS PubMed PubMed Central Google Scholar
- Klasen, D., Pages, F., Peyron, J. -F., Cantrell, D. A. & Olive, D. Two distinct regions of the CD28 intracytoplasmic domain are involved in the tyrosine phosphorylation of Vav and GTPase activating protein-associated p62 protein. Int. Immunol. 10, 481–489 (1998).
CAS PubMed Google Scholar
- Michel, F., Grimaud, L., Tuosto, L. & Acuto, O. Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J. Biol. Chem. 273, 31932–31938 (1998).
CAS PubMed Google Scholar
- Parry, R. V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur. J. Immunol. 27, 2495–2501 (1997).
CAS PubMed Google Scholar
- Cantrell, D. Protein kinase B (Akt) regulation and function in T lymphocytes. Semin. Immunol. 14, 19–26 (2002).
CAS PubMed Google Scholar
- Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunol. 2, 325–332 (2001).
CAS Google Scholar
- Burr, J. S. et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL . J. Immunol. 166, 5331–5335 (2001).
CAS PubMed Google Scholar
- Harada, Y. et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated co-stimulation in vivo. J. Immunol. 166, 3797–3803 (2001).
CAS PubMed Google Scholar
- Coudronniere, N., Villalba, M., Englund, N. & Altman, A. NF-κB activation induced by T cell receptor/CD28 co-stimulation is mediated by protein kinase C-θ. Proc. Natl Acad. Sci. USA 97, 3394–3399 (2000).
CAS PubMed PubMed Central Google Scholar
- Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 co-stimulatory signal for upregulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001).
CAS Google Scholar
- Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997).
CAS PubMed Google Scholar
- Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).
CAS PubMed Google Scholar
- Takesono, A., Finkelstein, L. D. & Schwartzberg, P. L. Beyond calcium: new signaling pathways for Tec family kinases. J. Cell Sci. 115, 3039–3048 (2002).
CAS PubMed Google Scholar
- Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and-independent pathways. J. Exp. Med. 195, 1103–1114 (2002).
CAS PubMed PubMed Central Google Scholar
- Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by co-stimulation during T cell activation. Science 282, 2266–2269 (1998).
CAS PubMed Google Scholar
- Nunès, J. A., Collette, Y., Truneh, A., Olive, D. & Cantrell, D. A. The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras. J. Exp. Med. 180, 1067–1076 (1994).
PubMed Google Scholar
- Rengarajan, J., Tang, B. & Glimcher, L. H. NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naive THcells. Nature Immunol. 3, 48–54 (2002).
CAS Google Scholar
- Fowell, D. J. et al. Impaired NFATc translocation and failure of TH2 development in Itk-deficient CD4+ T cells. Immunity 11, 399–409 (1999).
CAS PubMed Google Scholar
- Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and TH2 cytokine production. Immunity 8, 115–124 (1998).
CAS PubMed Google Scholar
- Marinari, B. et al. Vav cooperates with CD28 to induce NF-κB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur. J. Immunol. 32, 447–456 (2002).
CAS PubMed Google Scholar
- Hehner, S. P., Hofmann, T. G., Dienz, O., Droge, W. & Schmitz, M. L. Tyrosine-phosphorylated Vav1 as a point of integration for T-cell receptor- and CD28-mediated activation of JNK, p38, and interleukin-2 transcription. J. Biol. Chem. 275, 18160–18171 (2000).
CAS PubMed Google Scholar
- Crooks, M. E. et al. CD28-mediated co-stimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol. Cell Biol. 15, 6820–6828 (1995).
CAS PubMed PubMed Central Google Scholar
- Kim, H. H., Tharayil, M. & Rudd, C. E. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J. Biol. Chem. 273, 296–301 (1998).
CAS PubMed Google Scholar
- Aghazadeh, B., Lowry, W. E., Huang, X. -Y. & Rosen, M. K. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102, 625–633 (2000).
CAS PubMed Google Scholar
- Michel, F. & Acuto, O. CD28 co-stimulation: a source of Vav-1 for TCR signaling with the help of SLP-76? Sci. STKE 2002, PE35 ( 2002).
PubMed Google Scholar
- Turner, M. & Billadeau, D. D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Rev. Immunol. 2, 476–486 (2002).
CAS Google Scholar
- Nunès, J. A., Truneh, A., Olive, D. & Cantrell, D. A. Signal transduction by CD28 co-stimulatory receptor on T cells. J. Biol. Chem. 271, 1591–1598 (1996).
PubMed Google Scholar
- Tuosto, L., Michel, F. & Acuto, O. p95vav associates with tyrosine-phosphorylated SLP-76 in antigen-stimulated T cells. J. Exp. Med. 184, 1161–1166 (1996).
CAS PubMed Google Scholar
- Myung, P. S. et al. Differential requirement for SLP-76 domains in T cell development and function. Immunity 15, 1011–1026 (2001).
CAS PubMed Google Scholar
- Penninger, J. M. & Crabtree, G. R. The actin cytoskeleton and lymphocyte activation. Cell 96, 9–12 (1999).
CAS PubMed Google Scholar
- Wulfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc. Natl Acad. Sci. USA 97, 10150–10155 (2000).
CAS PubMed PubMed Central Google Scholar
- Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16, 331–343 (2002).
CAS PubMed Google Scholar
- Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).
CAS PubMed Google Scholar
- Manetz, T. S. et al. Vav1 regulates phospholipase Cγ activation and calcium responses in mast cells. Mol. Cell Biol. 21, 3763–3774 (2001).
CAS PubMed PubMed Central Google Scholar
- Cantrell, D. A. Phosphoinositide 3-kinase signalling pathways. J. Cell. Sci. 114, 1439–1445 (2001).
CAS PubMed Google Scholar
- Raab, M., Pfister, S. & Rudd, C. E. CD28 signaling via VAV/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 15, 921–933 (2001).
CAS PubMed Google Scholar
- Carey, M. The enhanceosome and transcriptional synergy. Cell 92, 5–8 (1998).
CAS PubMed Google Scholar
- June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481 (1987).
CAS PubMed PubMed Central Google Scholar
- Rooney, J. W., Sun, Y. L., Glimcher, L. H. & Hoey, T. Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation. Mol. Cell Biol. 15, 6299–6310 (1995).
CAS PubMed PubMed Central Google Scholar
- Freedman, B. D., Liu, Q. H., Somersan, S., Kotlikoff, M. I. & Punt, J. A. Receptor avidity and co-stimulation specify the intracellular Ca2+ signaling pattern in CD4+CD8+ thymocytes. J. Exp. Med. 190, 943–952 (1999).
CAS PubMed PubMed Central Google Scholar
- Su, B. et al. JNK is involved in signal integration during co-stimulation of T lymphocytes. Cell 77, 727–736 (1994).
PubMed Google Scholar
- Rivas, F. V., O'Herrin, S. & Gajewski, T. F. CD28 is not required for c-Jun N-terminal kinase activation in T cells. J. Immunol. 167, 3123–3128 (2001).
CAS PubMed Google Scholar
- Miller, A. T. & Berg, L. J. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr. Opin. Immunol. 14, 331–340 (2002).
CAS PubMed Google Scholar
- Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).
CAS PubMed Google Scholar
- Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte co-stimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999). This paper provides evidence for a role of co-stimulation in facilitating the clustering of glycolipid-enriched membrane microdomains (GEMs).
CAS PubMed Google Scholar
- Bromley, S. K. et al. The immunological synapse and CD28–CD80 interactions. Nature Immunol. 2, 1159–1166 (2001).
CAS Google Scholar
- Holdorf, A. D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell co-stimulation. J. Exp. Med. 190, 375–384 (1999).
CAS PubMed PubMed Central Google Scholar
- Herndon, T. M., Shan, X. C., Tsokos, G. C. & Wange, R. L. ZAP-70 and SLP-76 regulate protein kinase C-θ and NF-κB activation in response to engagement of CD3 and CD28. J. Immunol. 166, 5654–5664 (2001).
CAS PubMed Google Scholar
- Huang, J. et al. CD28 plays a critical role in the segregation of PKCθ within the immunologic synapse. Proc. Natl Acad. Sci. USA 99, 9369–9373 (2002).
CAS PubMed PubMed Central Google Scholar
- Wetzel, S. A., McKeithan, T. W. & Parker, D. C. Live-cell dynamics and the role of co-stimulation in immunological synapse formation. J. Immunol. 169, 6092–6101 (2002).
CAS PubMed Google Scholar
- Wulfing, C. et al. Co-stimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol. 3, 42–47 (2002). Using live immunofluorescence, this paper shows that CD28 contributes to TCR triggering by facilitating the accumulation of TCRs (including non-ligated TCRs) at the immune synapse (see also reference 131).
CAS Google Scholar
- Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29, 556–562 (1999).
CAS PubMed Google Scholar
- Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917 (2002).
CAS Google Scholar
- Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998). This work illustrates the point that CD28 signalling decreases the duration of TCR stimulation in determining T-cell fate (see also reference 145).
CAS PubMed Google Scholar
- Holdorf, A. D., Lee, K. H., Burack, W. R., Allen, P. M. & Shaw, A. S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol. 3, 259–264 (2002).
CAS Google Scholar
- Jun, J. E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003). This paper describes a point mutation in CARMA1, which is associated with lipid rafts after immunoreceptor triggering (see reference 138), that affects some but not all of the signalling pathways in which NF-κB is implicated: an example of qualitative differences in biological response with a minimum change in the behaviour of a single signalling component (see also reference 146).
CAS PubMed Google Scholar
- Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nature Immunol. 3, 836–843 (2002)
CAS Google Scholar
- Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).
CAS PubMed Google Scholar
- Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996). The first evidence that ligation of CD28 decreases the threshold number of ligated TCRs that are required for a given biological response.
CAS PubMed Google Scholar
- Manickasingham, S. P., Anderton, S. M., Burkhart, C. & Wraith, D. C. Qualitative and quantitative effects of CD28/B7-mediated co-stimulation on naive T cells in vitro. J. Immunol. 161, 3827–3835 (1998).
CAS PubMed Google Scholar
- Schweitzer, A. N. & Sharpe, A. H. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of TH2 but not TH1 cytokine production. J. Immunol. 161, 2762–2771 (1998).
CAS PubMed Google Scholar
- Rogers, P. R. & Croft, M. CD28, Ox-40, LFA-1, and CD4 modulation of TH1/TH2 differentiation is directly dependent on the dose of antigen. J. Immunol. 164, 2955–2963 (2000).
CAS PubMed Google Scholar
- Deenick, E. K., Gett, A. V. & Hodgkin, P. D. Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–4972 (2003).
CAS PubMed Google Scholar
- Kündig, T. M. et al. Duration of TCR stimulation determines co-stimulatory requirements of T cells. Immunity 5, 41–52 (1996). The first in vivo data that support a quantitative model of co-stimulation.
PubMed Google Scholar
- Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nature Immunol. 2, 29–36 (2001). An example of how sensitive certain biological responses are to a relatively small variation of a signalling component.
CAS Google Scholar
- Arendt, C. W., Albrecht, B., Soos, T. J. & Littman, D. R. Protein kinase C-θ: signaling from the center of the T-cell synapse. Curr. Opin. Immunol. 14, 323–330 (2002).
CAS PubMed Google Scholar
- Villalba, M. et al. Translocation of PKCθ in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J. Cell. Biol. 157, 253–263 (2002).
CAS PubMed PubMed Central Google Scholar
- Koretzky, G. A. & Myung, P. S. Positive and negative regulation of T-cell activation by adaptor proteins. Nature Rev. Immunol. 1, 95–107 (2001).
CAS Google Scholar
- Griffiths, E. K. & Penninger, J. M. Communication between the TCR and integrins: role of the molecular adapter ADAP/Fyb/Slap. Curr. Opin. Immunol. 14, 317–322 (2002).
CAS PubMed Google Scholar
- Wang, H. et al. SKAP-55 regulates integrin adhesion and formation of T cell–APC conjugates. Nature Immunol. 4, 366–374 (2003).
CAS Google Scholar
- Heyeck, S. D., Wilcox, H. M., Bunnell, S. C. & Berg, L. J. Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J. Biol. Chem. 272, 25401–25408 (1997).
CAS PubMed Google Scholar
- Yang, W. C., Ching, K. A., Tsoukas, C. D. & Berg, L. J. Tec kinase signaling in T cells is regulated by phosphatidylinositol 3-kinase and the Tec pleckstrin homology domain. J. Immunol. 166, 387–395 (2001).
CAS PubMed Google Scholar
- Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).
CAS PubMed Google Scholar
- Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).
CAS PubMed Google Scholar