Tolerance, not immunity, crucially depends on IL-2 (original) (raw)
Nelson, B. H. & Willerford, D. M. Biology of the interleukin-2 receptor. Adv. Immunol.70, 1–81 (1998). ArticleCASPubMed Google Scholar
He, Y. -W. & Malek, T. R. The structure and function of γc-dependent cytokines and receptors: regulation of T lymphocyte development and homeostasis. Crit. Rev. Immunol.18, 503–524 (1998). ArticleCASPubMed Google Scholar
Parrish-Novak, J., Foster, D. C., Holly, R. D. & Clegg, C. H. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J. Leukoc. Biol.72, 856–863 (2002). CASPubMed Google Scholar
Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity14, 105–110 (2001). CASPubMed Google Scholar
Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell75, 253–261 (1993). ArticleCASPubMed Google Scholar
Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol.25, 3053–3059 (1995). ArticleCASPubMed Google Scholar
Sadlack, B., Kuhn, R., Schorle, H., Muller, W. & Horak, I. Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur. J. Immunol.24, 281–284 (1994). References 5–7 describe the lymphoproliferation and lethal autoimmunity that is associated with IL-2 deficiency and indicate that the main function of IL-2 is to control peripheral T-cell tolerance. ArticleCASPubMed Google Scholar
Suzuki, H., Duncan, G. S., Takimoto, H. & Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med.185, 499–505 (1997). ArticleCASPubMedPubMed Central Google Scholar
Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity3, 521–530 (1995). ArticleCASPubMed Google Scholar
Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). ArticleCASPubMed Google Scholar
Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med.191, 771–780 (2000). ArticleCASPubMedPubMed Central Google Scholar
Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science193, 1007–1008 (1976). ArticleCASPubMed Google Scholar
Gillis, S. & Smith, K. A. In vitro generation of tumor-specific cytotoxic lymphocytes. Secondary allogeneic mixed tumor lymphocyte culture of normal murine spleen cells. J. Exp. Med.146, 468–482 (1977). ArticleCASPubMedPubMed Central Google Scholar
Taniguchi, T. et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature302, 305–310 (1983). ArticleCASPubMed Google Scholar
Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell101, 455–458 (2000). ArticleCASPubMed Google Scholar
Sakaguchi, S. Naturally arising CD4+ regulatory T Cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol.22, 531–562 (2004). ArticleCASPubMed Google Scholar
Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity17, 167–178 (2002). This paper was the first to provide direct evidence that IL-2- and/or IL-2R-dependent events have a role in the production of TRegcells. TReg-cell production and function was restored after thymus-specific expression of IL-2Rβ inIL-2rβ−/−mice, thereby preventing lethal autoimmunity. Identical suppression of autoimmunity was shown after adoptive transfer of wild-type TRegcells into neonatalII-2rβ−/−mice. This protection was contingent on both the donor TRegcells expressing a functional IL-2R and the host producing IL-2. ArticleCASPubMed Google Scholar
Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol.10, 371–378 (1998). ArticleCASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). ArticleCASPubMedPubMed Central Google Scholar
Almeida, A. R., Legrand, N., Papiernik, M. & Freitas, A. A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol.169, 4850–4860 (2002). ArticlePubMed Google Scholar
Klebb, G. et al. Interleukin-2 is indispensable for development of immunological self-tolerance. Clin. Immunol. Immunopathol.81, 282–286 (1996). ArticleCASPubMed Google Scholar
Suzuki, H., Zhou, Y. W., Kato, M., Mak, T. W. & Nakashima, I. Normal regulatory αβ T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor β in vivo. J. Exp. Med.190, 1561–1572 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wolf, M., Schimpl, A. & Hunig, T. Control of T cell hyperactivation in IL-2-deficient mice by CD4+CD25− and CD4+CD25+ T cells: evidence for two distinct regulatory mechanisms. Eur. J. Immunol.31, 1637–1645 (2001). This was the first paper to show that the abnormal behaviour ofII-2−/−T cells is controlled by TRegcells. The transfer ofII-2−/−CD4+ T cells to athymic nude mice led to uncontrolled clonal expansion of the donor cells, whereas the co-transfer of CD4+CD25+ T cells andII-2−/−CD4+ T cells to nude mice prevented this abnormal proliferation. ArticleCASPubMed Google Scholar
Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med.196, 851–857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Malek, T. R., Porter, B. O., Codias, E. K., Scibelli, P. & Yu, A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J. Immunol.164, 2905–2914 (2000). ArticleCASPubMed Google Scholar
Burchill, M. A. et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J. Immunol.171, 5853–5864 (2003). ArticleCASPubMed Google Scholar
Snow, J. W. et al. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J. Immunol.171, 5042–5050 (2003). ArticleCASPubMed Google Scholar
Antov, A., Yang, L., Vig, M., Baltimore, D. & Van Parijs, L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J. Immunol.171, 3435–3441 (2003). ArticleCASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998). ArticleCASPubMed Google Scholar
Thornton, A. M., Piccirillo, C. A. & Shevach, E. M. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol.34, 366–376 (2004). ArticleCASPubMed Google Scholar
Tang, T. et al. In vitro expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199, 1455–1465 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R. & Edinger, M. Large scale in vitro expansion of polyclonal human CD4+CD25hi regulatory T Cells. Blood104, 895–903 (2004). ArticleCASPubMed Google Scholar
Bensinger, S. J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol.172, 5287–5296 (2004). ArticleCASPubMed Google Scholar
Cozzo, C., Larkin, J. & Caton, A. J. Self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J. Immunol.171, 5678–5682 (2003). ArticleCASPubMed Google Scholar
Gavin, M. A., Clarke, S. R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nature Immunol.3, 33–41 (2002). ArticleCAS Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). ArticleCASPubMed Google Scholar
Tang, Q. et al. CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol.171, 3348–3352 (2003). ArticleCASPubMed Google Scholar
Thornton, A. M., Donovan, E. E., Piccirillo, C. A. & Shevach, E. M. IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol.172, 6519–6523 (2004). ArticleCASPubMed Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003). ArticleCASPubMed Google Scholar
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330–336 (2003). ArticleCAS Google Scholar
Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol.4, 337–342 (2003). ArticleCAS Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). ArticleCASPubMedPubMed Central Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). ArticleCASPubMed Google Scholar
Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlowCD4+ T cells. J. Exp. Med.183, 2669–2674 (1996). ArticleCASPubMed Google Scholar
Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med.184, 387–396 (1996). ArticleCASPubMed Google Scholar
Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol.2, 882–888 (2001). ArticleCAS Google Scholar
He, Y. -W., Nakajima, H., Leonard, W. J., Adkins, B. & Malek, T. R. The common γ-chain of cytokine receptors regulates intrathymic T cell development at multiple stages. J. Immunol.158, 2592–2599 (1997). CASPubMed Google Scholar
Depper, J. M., Leonard, W. J., Robb, R. J., Waldmann, T. A. & Greene, W. C. Blockade of the interleukin-2 receptor by anti-Tac antibody: inhibition of human lymphocyte activation. J. Immunol.131, 690–696 (1983). CASPubMed Google Scholar
Malek, T. R., Ortega, G., Jakway, J. P., Chan, C. & Shevach, E. M. The murine IL 2 receptor. II. Monoclonal anti-IL 2 receptor antibodies as specific inhibitors of T cell function in vitro. J. Immunol.133, 1976–1982 (1984). CASPubMed Google Scholar
Gillis, S., Gillis, A. E. & Henney, C. S. Monoclonal antibody directed against interleukin 2. I. Inhibition of T lymphocyte mitogenesis and the in vitro differentiation of alloreactive cytolytic T cells. J. Exp. Med.154, 983–988 (1981). ArticleCASPubMed Google Scholar
Koretzky, G. A., Daniele, R. P., Greene, W. C. & Nowell, P. C. Evidence for an interleukin-independent pathway for human lymphocyte activation. Proc. Natl Acad. Sci. USA80, 3444–3447 (1983). ArticleCASPubMedPubMed Central Google Scholar
Schorle, H., Holtschke, T., Hunig, T., Shimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature352, 621–624 (1991). ArticleCASPubMed Google Scholar
Razi-Wolf, Z., Hollander, G. A. & Reiser, H. Activation of CD4+ T lymphocytes from interleukin 2-deficient mice by costimulatory B7 molecules. Proc. Natl Acad. Sci. USA93, 2903–2908 (1996). ArticleCASPubMedPubMed Central Google Scholar
Van Parijs, L. et al. Functional responses and apoptosis of CD25 (IL-2Rα)-deficient T cells expressing a transgenic antigen receptor. J. Immunol.158, 3738–3745 (1997). CASPubMed Google Scholar
Malek, T. R., Yu, A., Scibelli, P., Lichtenheld, M. G. & Codias, E. K. Broad programming by IL-2 receptor signaling for extended growth to multiple cytokines and functional maturation of antigen-activated T cells. J. Immunol.166, 1675–1683 (2001). ArticleCASPubMed Google Scholar
Appleman, L. J., Berezovskaya, A., Grass, I. & Boussiotis, V. A. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J. Immunol.164, 144–151 (2000). This paper shows that co-stimulation through CD28 regulates progression through the G1 phase of the cell cycle in an IL-2-independent manner. In the absence of IL-2, some T cells arrest at the G1–S transition, but a considerable number progress through S phase, indicating that CD28 mediates some T-cell proliferation in an IL-2-independent manner. ArticleCASPubMed Google Scholar
Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity2, 223–238 (1995). ArticleCASPubMed Google Scholar
Lenardo, M. J. Interleukin-2 programs αβ T lymphocytes for apoptosis. Nature353, 858–861 (1991). ArticleCASPubMed Google Scholar
Kneitz, B., Herrmann, T., Yonehara, S. & Schimpl, A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur. J. Immunol.25, 2572–2577 (1995). ArticleCASPubMed Google Scholar
Van Parijs, L. & Abbas, A. K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science280, 243–248 (1998). ArticleCASPubMed Google Scholar
Kung, J., Beller, D. & Ju, S. Lymphokine regulation of activation-induced apoptosis in T cells of IL-2 and IL-2Rβ knockout mice. Cell. Immunol.185, 158–163 (1998). ArticleCASPubMed Google Scholar
Zheng, L., Trageser, C. L., Willerford, D. M. & Lenardo, M. J. T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J. Immunol.160, 763–769 (1998). CASPubMed Google Scholar
Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science262, 1059–1061 (1993). This paper shows that normalin vivoimmune responses occur in IL-2-deficient mice, including the induction of protective CTL and antibody responses after viral infection. Both THcells and NK cells showed reduced activity but were still functionally active. This study was the first to question the idea that IL-2 is essential for T-cell immunityin vivo. ArticleCASPubMed Google Scholar
Steiger, J., Nickerson, P. W., Steurer, W., Moscovitch-Lopatin, M. & Strom, T. B. IL-2 knockout recipient mice reject islet cell allografts. J. Immunol.155, 489–498 (1995). CASPubMed Google Scholar
Bachmann, M. F. et al. Antiviral immune responses in mice deficient for both interleukin-2 and interleukin-4. J. Virol.69, 4842–4846 (1995). CASPubMedPubMed Central Google Scholar
Nishimura, H. et al. Mice lacking interleukin-2 (IL-2)/IL-15 receptor β chain are susceptible to infection with avirulent Salmonella enterica subsp. enterica serovar choleraesuis but mice lacking IL-2 are resistant. Infect. Immun.69, 1226–1229 (2001). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, H., Hayakawa, A., Bouchard, D., Nakashima, I. & Mak, T. W. Normal thymic selection, superantigen-induced deletion and Fas-mediated apoptosis of T cells in IL-2 receptor β-chain deficient mice. Int. Immunol.9, 1367–1374 (1997). ArticleCASPubMed Google Scholar
D'Souza, W. N. & Lefrancois, L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J. Immunol.171, 5727–5735 (2003). ArticleCASPubMed Google Scholar
Leung, D. T., Morefield, S. & Willerford, D. M. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J. Immunol.164, 3527–3534 (2000). ArticleCASPubMed Google Scholar
D'Souza, W. N., Schluns, K. S., Masopust, D. & Lefrancois, L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J. Immunol.168, 5566–5572 (2002). ArticleCASPubMed Google Scholar
Yu, A. et al. Efficient induction of primary and secondary T cell-dependent immune responses in vivo in the absence of functional IL-2 and IL-15 receptors. J. Immunol.170, 236–242 (2003). This paper shows that T-cell immunity to skin grafts, TH-cell-dependent antibody responses and T-cell mediated responses to viruses are mostly functional inII-2rβ−/−mice, in which the mature T cells are peripherally non-responsive to IL-2 and IL-15. Because these mice were made free of autoimmune disease by correcting TReg-cell production, the resulting immune responses cannot be the result of improper activation, a property that is typically associated with IL-2- or IL-2R-deficiency. ArticleCASPubMed Google Scholar
Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science254, 707–710 (1991). ArticleCASPubMed Google Scholar
Cousens, L. P., Orange, J. S. & Biron, C. A. Endogenous IL-2 contributes to T cell expansion and IFN-γproduction during lymphocytic choriomeningitis virus infection. J. Immunol.155, 5690–5699 (1995). CASPubMed Google Scholar
Su, H. C. et al. CD4+ and CD8+ T cell interactions in IFN-γ and IL-4 responses to viral infections: requirements for IL-2. J. Immunol.160, 5007–5017 (1998). CASPubMed Google Scholar
Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nature Med.9, 540–547 (2003). ArticleCASPubMed Google Scholar
Cheng, L. E. & Greenberg, P. D. Selective delivery of augmented IL-2 receptor signals to responding CD8+ T cells increases the size of the acute antiviral response and of the resulting memory T cell pool. J. Immunol.169, 4990–4997 (2002). ArticlePubMed Google Scholar
Cheng, L. E., Ohlen, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA99, 3001–3006 (2002). References 79–81 report the effect of systemic IL-2 during the clonal expansion, contraction and memory phases ofin vivoT-cell responses to viral infection. IL-2 showed its greatest benefit during the contraction phase of the response, in which it increased proliferation and survival of long-lived virus-specific T cells. ArticleCASPubMedPubMed Central Google Scholar
Li, X. C. et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nature Med.7, 114–118 (2001). ArticleCASPubMed Google Scholar
Sepulveda, H., Cerwenka, A., Morgan, T. & Dutton, R. W. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J. Immunol.163, 1133–1142 (1999). CASPubMed Google Scholar
Croft, M. Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev.14, 265–273 (2003). ArticleCASPubMed Google Scholar
Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science302, 875–878 (2003). ArticleCASPubMed Google Scholar
Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. γ chain required for naive CD4+ T cell survival but not antigen proliferation. Nature Immunol.1, 54–58 (2000). ArticleCAS Google Scholar
Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med.193, 1295–1302 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.193, 1303–1310 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol.31, 1247–1254 (2001). ArticleCASPubMed Google Scholar
Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001). ArticleCASPubMed Google Scholar
Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25hi regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001). References 87–92 are the first reports to show that human CD4+CD25+ T cells isolated from peripheral blood havein vitroproperties and suppressor functions similar to their mouse counterparts. ArticleCASPubMed Google Scholar
Davey, R. T. Jr et al. Immunologic and virologic effects of subcutaneous interleukin 2 in combination with antiretroviral therapy: a randomized controlled trial. JAMA284, 183–189 (2000). ArticleCASPubMed Google Scholar
Kovacs, J. A. et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N. Engl. J. Med.335, 1350–1356 (1996). ArticleCASPubMed Google Scholar
Yang, J. C. et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol.21, 3127–3132 (2003). ArticleCASPubMed Google Scholar
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCASPubMed Google Scholar
Murakami, M., Sakamoto, A., Bender, J., Kappler, J. & Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl Acad. Sci. USA99, 8832–8837 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sereti, I. et al. IL-2 induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood104, 775–780 (2004). ArticleCASPubMed Google Scholar
McHugh, R. S. & Shevach, E. M. Depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol.168, 5979–5983 (2002). ArticleCASPubMed Google Scholar
Foss, F. M. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann. NY Acad. Sci.941, 166–176 (2001). ArticleCASPubMed Google Scholar
Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res.59, 3128–3133 (1999). CASPubMed Google Scholar
Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194, 823–832 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163, 5211–5218 (1999). CASPubMed Google Scholar
Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169, 2756–2761 (2002). ArticleCASPubMed Google Scholar
Woo, E. Y. et al. Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168, 4272–4276 (2002). ArticleCASPubMed Google Scholar
Ichihara, F. et al. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res.9, 4404–4408 (2003). PubMed Google Scholar
Wolf, A. M. et al. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res.9, 606–612 (2003). PubMed Google Scholar
Sasada, T., Kimura, M., Yoshida, Y., Kanai, M. & Takabayashi, A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer98, 1089–1099 (2003). ArticlePubMed Google Scholar
Church, A. C. Clinical advances in therapies targeting the interleukin-2 receptor. QJM 96, 91–102 (2003).
Waldmann, T. A. & O'Shea, J. The use of antibodies against the IL-2 receptor in transplantation. Curr. Opin. Immunol.10, 507–512 (1998). ArticleCASPubMed Google Scholar
Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med.343, 230–238 (2000). ArticleCASPubMed Google Scholar