Roles of interferon-regulatory factors in T-helper-cell differentiation (original) (raw)
Miyamoto, M. et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements. Cell54, 903–913 (1988). CASPubMed Google Scholar
Harada, H. et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell58, 729–739 (1989). CASPubMed Google Scholar
Tanaka, N., Kawakami, T. & Taniguchi, T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol.13, 4531–4538 (1993). CASPubMedPubMed Central Google Scholar
Darnell, J. E., Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994). CASPubMed Google Scholar
Au, W. C., Moore, P. A., Lowther, W., Juang, Y. T. & Pitha, P. M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl Acad. Sci. USA92, 11657–11661 (1995). CASPubMedPubMed Central Google Scholar
Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem.276, 23382–23390 (2001). CASPubMed Google Scholar
Driggers, P. H. et al. An interferon γ-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA87, 3743–3747 (1990). CASPubMedPubMed Central Google Scholar
Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev.9, 1377–1387 (1995). CASPubMed Google Scholar
Grant, C. E., Vasa, M. Z. & Deeley, R. G. cIRF-3, a new member of the interferon regulatory factor (IRF) family that is rapidly and transiently induced by dsRNA. Nucleic Acids Res.23, 2137–2146 (1995). CASPubMedPubMed Central Google Scholar
Hatada, S. et al. An interferon regulatory factor-related gene (xIRF-6) is expressed in the posterior mesoderm during the early development of Xenopus laevis. Gene203, 183–188 (1997). CASPubMed Google Scholar
Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res.23, 2127–2136 (1995). CASPubMedPubMed Central Google Scholar
Nehyba, J., Hrdlickova, R., Burnside, J. & Bose, H. R. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol. Cell. Biol.22, 3942–3957 (2002). CASPubMedPubMed Central Google Scholar
Schindler, C., Fu, X. Y., Improta, T., Aebersold, R. & Darnell, J. E. Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl Acad. Sci. USA89, 7836–7839 (1992). CASPubMedPubMed Central Google Scholar
Yamagata, T. et al. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes. Mol. Cell. Biol.16, 1283–1294 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. & Pagano, J. S. IRF-7, a new interferon regulatory factor associated with Epstein–Barr virus latency. Mol. Cell. Biol.17, 5748–5757 (1997). CASPubMedPubMed Central Google Scholar
Hobart, M., Ramassar, V., Goes, N., Urmson, J. & Halloran, P. F. IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo. J. Immunol.158, 4260–4269 (1997). CASPubMed Google Scholar
Kamijo, R. et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science263, 1612–1615 (1994). CASPubMed Google Scholar
Tanaka, N. et al. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature382, 816–818 (1996). CASPubMed Google Scholar
Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol.19, 623–655 (2001). ArticleCASPubMed Google Scholar
Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell87, 307–317 (1996). CASPubMed Google Scholar
Meraro, D. et al. Protein–protein and DNA–protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J. Immunol.163, 6468–6478 (1999). CASPubMed Google Scholar
Barber, S. A., Fultz, M. J., Salkowski, C. A. & Vogel, S. N. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect. Immun.63, 601–608 (1995). CASPubMedPubMed Central Google Scholar
Galon, J., Sudarshan, C., Ito, S., Finbloom, D. & O'Shea, J. J. IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J. Immunol.162, 7256–7262 (1999). CASPubMed Google Scholar
Coccia, E. M., Stellacci, E., Marziali, G., Weiss, G. & Battistini, A. IFN-γ and IL-4 differently regulate inducible NO synthase gene expression through IRF-1 modulation. Int. Immunol.12, 977–985 (2000). CASPubMed Google Scholar
Elser, B. et al. IFN-γ represses IL-4 expression via IRF-1 and IRF-2. Immunity17, 703–712 (2002). CASPubMed Google Scholar
Pine, R., Canova, A. & Schindler, C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN α and IFN γ, and is likely to autoregulate the p91 gene. EMBO J.13, 158–167 (1994). CASPubMedPubMed Central Google Scholar
Remoli, M. E. et al. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J. Immunol.169, 366–374 (2002). CASPubMed Google Scholar
Lin, R. & Hiscott, J. A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol. Cell. Biochem.191, 169–180 (1999). CASPubMed Google Scholar
Nelson, N. et al. Expression of IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus sequence binding protein expression by T cell activation. J. Immunol.156, 3711–3720 (1996). CASPubMed Google Scholar
Watanabe, N., Sakakibara, J., Hovanessian, A. G., Taniguchi, T. & Fujita, T. Activation of IFN-β element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis. Nucleic Acids Res.19, 4421–4428 (1991). CASPubMedPubMed Central Google Scholar
Harada, H. et al. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol. Cell. Biol.14, 1500–1509 (1994). CASPubMedPubMed Central Google Scholar
Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell75, 83–97 (1993). CASPubMed Google Scholar
Yamamoto, H., Lamphier, M. S., Fujita, T., Taniguchi, T. & Harada, H. The oncogenic transcription factor IRF-2 possesses a transcriptional repression and a latent activation domain. Oncogene9, 1423–1428 (1994). CASPubMed Google Scholar
Jesse, T. L., LaChance, R., Iademarco, M. F. & Dean, D. C. Interferon regulatory factor-2 is a transcriptional activator in muscle where it regulates expression of vascular cell adhesion molecule-1. J. Cell Biol.140, 1265–1276 (1998). CASPubMedPubMed Central Google Scholar
Childs, K. S. & Goodbourn, S. Identification of novel co-repressor molecules for interferon regulatory factor-2. Nucleic Acids Res.31, 3016–3026 (2003). CASPubMedPubMed Central Google Scholar
Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene237, 1–14 (1999). CASPubMed Google Scholar
Qin, B. Y. et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nature Struct. Biol.10, 913–921 (2003). CASPubMed Google Scholar
Takahasi, K. et al. X-ray crystal structure of IRF-3 and its functional implications. Nature Struct. Biol.10, 922–927 (2003). CASPubMed Google Scholar
Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol.4, 491–496 (2003). CAS Google Scholar
McWhirter, S. M. et al. IFN-regulatory factor 3-dependent gene expression is defective in _Tbk1_-deficient mouse embryonic fibroblasts. Proc. Natl Acad. Sci. USA101, 233–238 (2004). CASPubMed Google Scholar
Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science300, 1148–1151 (2003). CASPubMed Google Scholar
Karpova, A. Y., Trost, M., Murray, J. M., Cantley, L. C. & Howley, P. M. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc. Natl Acad. Sci. USA99, 2818–2823 (2002). CASPubMedPubMed Central Google Scholar
Marecki, S., Atchison, M. L. & Fenton, M. J. Differential expression and distinct functions of IFN regulatory factor 4 and IFN consensus sequence binding protein in macrophages. J. Immunol.163, 2713–2722 (1999). CASPubMed Google Scholar
Grossman, A. et al. Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23–p25. Genomics37, 229–233 (1996). CASPubMed Google Scholar
Grumont, R. J. & Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by Rel/nuclear factor κB. J. Exp. Med.191, 1281–1292 (2000). CASPubMedPubMed Central Google Scholar
Gupta, S., Jiang, M., Anthony, A. & Pernis, A. B. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J. Exp. Med.190, 1837–1848 (1999). CASPubMedPubMed Central Google Scholar
Lau, J. F., Parisien, J. P. & Horvath, C. M. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc. Natl Acad. Sci. USA97, 7278–7283 (2000). CASPubMedPubMed Central Google Scholar
Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev.10, 2335–2347 (1996). CASPubMed Google Scholar
Barnes, B. J. et al. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J. Biol. Chem.279, 45194–45207 (2004). CASPubMed Google Scholar
Barnes, B. J., Kellum, M. J., Field, A. E. & Pitha, P. M. Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes. Mol. Cell. Biol.22, 5721–5740 (2002). CASPubMedPubMed Central Google Scholar
Barnes, B. J., Field, A. E. & Pitha-Rowe, P. M. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes. J. Biol. Chem.278, 16630–16641 (2003). CASPubMed Google Scholar
Kondo, S. et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nature Genet.32, 285–289 (2002). CASPubMed Google Scholar
Izaguirre, A. et al. Comparative analysis of IRF and IFN-α expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol.74, 1125–1138 (2003). CASPubMed Google Scholar
Lu, R., Au, W. C., Yeow, W. S., Hageman, N. & Pitha, P. M. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon and silencing by hypermethylation. J. Biol. Chem.275, 31805–31812 (2000). CASPubMed Google Scholar
Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol.170, 3059–3064 (2003). CASPubMed Google Scholar
Kerkmann, M. et al. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol.170, 4465–4474 (2003). CASPubMed Google Scholar
Lin, R., Mamane, Y. & Hiscott, J. Multiple regulatory domains control IRF-7 activity in response to virus infection. J. Biol. Chem.275, 34320–34327 (2000). CASPubMed Google Scholar
Marie, I., Durbin, J. E. & Levy, D. E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J.17, 6660–6669 (1998). CASPubMedPubMed Central Google Scholar
Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett.441, 106–110 (1998). CASPubMed Google Scholar
Au, W. C., Yeow, W. S. & Pitha, P. M. Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3. Virology280, 273–282 (2001). CASPubMed Google Scholar
Lu, R. & Pitha, P. M. Monocyte differentiation to macrophage requires interferon regulatory factor 7. J. Biol. Chem.276, 45491–45496 (2001). CASPubMed Google Scholar
Tsujimura, H., Tamura, T. & Ozato, K. IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol.170, 1131–1135 (2003). This paper shows that IRF8 is associated with the generation of TH1-cell-inducing plasmacytoid DCs. CASPubMed Google Scholar
Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T. & Ozato, K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity13, 155–165 (2000). CASPubMed Google Scholar
Sharf, R. et al. Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J. Biol. Chem.272, 9785–9792 (1997). CASPubMed Google Scholar
Nelson, N., Marks, M. S., Driggers, P. H. & Ozato, K. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol. Cell. Biol.13, 588–599 (1993). CASPubMedPubMed Central Google Scholar
Sharf, R. et al. Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors. J. Biol. Chem.270, 13063–13069 (1995). CASPubMed Google Scholar
Weisz, A. et al. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. J. Biol. Chem.267, 25589–25596 (1992). CASPubMed Google Scholar
Eklund, E. A., Jalava, A. & Kakar, R. PU. 1, interferon regulatory factor 1, and interferon consensus sequence-binding protein cooperate to increase gp91_phox_ expression. J. Biol. Chem.273, 13957–13965 (1998). CASPubMed Google Scholar
Levy, D. E., Lew, D. J., Decker, T., Kessler, D. S. & Darnell, J. E. Synergistic interaction between interferon-α and interferon-γ through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J.9, 1105–1111 (1990). CASPubMedPubMed Central Google Scholar
Lohoff, M. et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity6, 681–689 (1997). CASPubMed Google Scholar
Taki, S. et al. Multistage regulation of TH1-type immune responses by the transcription factor IRF-1. Immunity6, 673–679 (1997). References 70 and 71 are the first reports to associate IRFs with the TH1-cell versus TH2-cell differentiation concept. They describe the marked TH2-response-prone phenotype ofIrf1−/−mice. CASPubMed Google Scholar
Sommer, F. et al. Lack of gastritis and of an adaptive immune response in interferon regulatory factor-1-deficient mice infected with Helicobacter pylori. Eur. J. Immunol.31, 396–402 (2001). CASPubMed Google Scholar
Liu, J., Cao, S., Herman, L. M. & Ma, X. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-γ-primed IL-12 production by IFN regulatory factor 1. J. Exp. Med.198, 1265–1276 (2003). CASPubMedPubMed Central Google Scholar
Maruyama, S. et al. Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter. J. Immunol.170, 997–1001 (2003). CASPubMed Google Scholar
Salkowski, C. A. et al. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol.163, 1529–1536 (1999). CASPubMed Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000). CASPubMed Google Scholar
Fantuzzi, G. et al. Role of interferon regulatory factor-1 in the regulation of IL-18 production and activity. Eur. J. Immunol.31, 369–375 (2001). CASPubMed Google Scholar
Niedbala, W. et al. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc. Natl Acad. Sci. USA99, 16186–16191 (2002). CASPubMedPubMed Central Google Scholar
Laskay, T., Rollinghoff, M. & Solbach, W. Natural killer cells participate in the early defense against Leishmania major infection in mice. Eur. J. Immunol.23, 2237–2241 (1993). CASPubMed Google Scholar
Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med.178, 567–577 (1993). CASPubMed Google Scholar
Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature391, 700–703 (1998). CASPubMed Google Scholar
Hida, S. et al. CD8+ T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-α/β signaling. Immunity13, 643–655 (2000). CASPubMed Google Scholar
Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc. Natl Acad. Sci. USA101, 2416–2421 (2004). CASPubMedPubMed Central Google Scholar
Ichikawa, E. et al. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. Proc. Natl Acad. Sci. USA101, 3909–3914 (2004). References 83 and 84 are the first reports to describe the effects of IRF2 on the generation of the B220−CD8α−subset of DCs. CASPubMedPubMed Central Google Scholar
Lohoff, M. et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J. Exp. Med.192, 325–336 (2000). This paper describes the TH2-response-prone phenotype ofIrf2−/−mice. It also describes the dysregulated maturation of NK cells in these mice. CASPubMedPubMed Central Google Scholar
Wang, I. M. et al. An IFN-γ-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol.165, 271–279 (2000). CASPubMed Google Scholar
Bovolenta, C. et al. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl Acad. Sci. USA91, 5046–5050 (1994). CASPubMedPubMed Central Google Scholar
Salkowski, C. A., Barber, S. A., Detore, G. R. & Vogel, S. N. Differential dysregulation of nitric oxide production in macrophages with targeted disruptions in IFN regulatory factor-1 and -2 genes. J. Immunol.156, 3107–3110 (1996). CASPubMed Google Scholar
Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA99, 11808–11812 (2002). CASPubMedPubMed Central Google Scholar
Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med.195, 1003–1012 (2002). References 89 and 90 are the first descriptions of the requirement for IRF4 in mouse TH2-cell development. Reference 89 also shows that IRF4 upregulates the expression of GATA3. Reference 90 also indicates that an IRF4–NFAT1 interaction might be the underlying molecular mechanism. CASPubMedPubMed Central Google Scholar
Tominaga, N. et al. Development of TH1 and not TH2 immune responses in mice lacking IFN-regulatory factor-4. Int. Immunol.15, 1–10 (2003). CASPubMed Google Scholar
Hu, C. M., Jang, S. Y., Fanzo, J. C. & Pernis, A. B. Modulation of T cell cytokine production by interferon regulatory factor-4. J. Biol. Chem.277, 49238–49246 (2002). This paper shows the relevance of IRF4 for the production of human TH2 cells. CASPubMed Google Scholar
Lohoff, M. et al. Enhanced TCR-induced apoptosis in interferon regulatory factor 4-deficient CD4+ TH cells. J. Exp. Med.200, 247–253 (2004). CASPubMedPubMed Central Google Scholar
Serfling, E. et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta1498, 1–18 (2000). CASPubMed Google Scholar
Zhu, J. et al. Growth factor independent-1 induced by IL-4 regulates TH2 cell proliferation. Immunity16, 733–744 (2002). CASPubMed Google Scholar
Dent, A. L., Hu-Li, J., Paul, W. E. & Staudt, L. M. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc. Natl Acad. Sci. USA95, 13823–13828 (1998). CASPubMedPubMed Central Google Scholar
Rosenbauer, F. et al. Interferon consensus sequence binding protein and interferon regulatory factor-4/Pip form a complex that represses the expression of the interferon-stimulated gene-15 in macrophages. Blood94, 4274–4281 (1999). CASPubMed Google Scholar
Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science275, 540–543 (1997). CASPubMed Google Scholar
Fanzo, J. C., Hu, C. M., Jang, S. Y. & Pernis, A. B. Regulation of lymphocyte apoptosis by interferon regulatory factor 4 (IRF-4). J. Exp. Med.197, 303–314 (2003). CASPubMedPubMed Central Google Scholar
Suzuki, S. et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α− dendritic cell development. Proc. Natl Acad. Sci. USA101, 8981–8986 (2004). CASPubMedPubMed Central Google Scholar
Fehr, T. et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J. Exp. Med.185, 921–931 (1997). CASPubMedPubMed Central Google Scholar
Giese, N. A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med.186, 1535–1546 (1997). This paper and reference 104 are the first reports to describe the TH2-response-prone phenotype ofIrf8−/−mice. This paper also describes the susceptibility of these mice to infection withL. majorand their deficit in IL-12 production. Reference 104 also describes the susceptibility of these mice to infection withToxoplasma gondiiand their deficit in IL-12 production. CASPubMedPubMed Central Google Scholar
Hein, J. et al. Interferon consensus sequence binding protein confers resistance against Yersinia enterocolitica. Infect. Immun.68, 1408–1417 (2000). CASPubMedPubMed Central Google Scholar
Scharton, K. T., Contursi, C., Masumi, A., Sher, A. & Ozato, K. Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J. Exp. Med.186, 1523–1534 (1997). Google Scholar
Kim, Y. M. et al. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J. Immunol.163, 2000–2007 (1999). CASPubMed Google Scholar
Wu, C. Y., Maeda, H., Contursi, C., Ozato, K. & Seder, R. A. Differential requirement of IFN consensus sequence binding protein for the production of IL-12 and induction of TH1-type cells in response to IFN-γ. J. Immunol.162, 807–812 (1999). CASPubMed Google Scholar
Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity17, 251–263 (2002). CASPubMed Google Scholar
Fitzgerald, K. A. et al. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med.198, 1043–1055 (2003). CASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol.169, 6668–6672 (2002). CASPubMed Google Scholar
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301, 640–643 (2003). CASPubMed Google Scholar
Barnes, B. J. et al. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J. Biol. Chem.279, 45194–45207 (2004). CASPubMed Google Scholar
Fujita, T., Kimura, Y., Miyamoto, M., Barsoumian, E. L. & Taniguchi, T. Induction of endogenous IFN-α and IFN-β genes by a regulatory transcription factor, IRF-1. Nature337, 270–272 (1989). CASPubMed Google Scholar
Wathelet, M. G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell1, 507–518 (1998). CASPubMed Google Scholar
Sasaki, S., Amara, R. R., Yeow, W. S., Pitha, P. M. & Robinson, H. L. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J. Virol.76, 6652–6659 (2002). CASPubMedPubMed Central Google Scholar
Nakao, F. et al. Association of IFN-γ and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. J. Allergy Clin. Immunol.107, 499–504 (2001). CASPubMed Google Scholar
Cherwinski, H. M., Schumacher, J. H., Brown, K. D. & Mosmann, T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between TH1 and TH2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J. Exp. Med.166, 1229–1244 (1987). CASPubMed Google Scholar
Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. TH2 clones secrete a factor that inhibits cytokine production by TH1 clones. J. Exp. Med.170, 2081–2095 (1989). CASPubMed Google Scholar
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Rev. Immunol.2, 845–858 (2002). CAS Google Scholar
Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol.2, 933–944 (2002). CAS Google Scholar
Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell89, 587–596 (1997). CASPubMed Google Scholar
Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity12, 27–37 (2000). CASPubMed Google Scholar
Takemoto, N. et al. Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for TH2-specific cytokine gene cluster. J. Immunol.165, 6687–6691 (2000). CASPubMed Google Scholar
Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA94, 10838–10843 (1997). CASPubMedPubMed Central Google Scholar
Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other TH2 cytokines. Immunity10, 745–751 (1999). CASPubMed Google Scholar
Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA98, 15137–15142 (2001). CASPubMedPubMed Central Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell100, 655–669 (2000). CASPubMed Google Scholar
Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol.3, 549–557 (2002). CAS Google Scholar
Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nature Immunol.3, 652–658 (2002). CAS Google Scholar
Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002). CASPubMed Google Scholar
Smeltz, R. B., Chen, J., Ehrhardt, R. & Shevach, E. M. Role of IFN-γ in TH1 differentiation: IFN-γ regulates IL-18Rα expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor β2 expression. J. Immunol.168, 6165–6172 (2002). CASPubMed Google Scholar
Bradley, L. M., Dalton, D. K. & Croft, M. A direct role for IFN-γ in regulation of TH1 cell development. J. Immunol.157, 1350–1358 (1996). CASPubMed Google Scholar
Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nature Immunol.1, 65–69 (2000). CAS Google Scholar
Rogge, L. et al. The role of Stat4 in species-specific regulation of TH cell development by type I IFNs. J. Immunol.161, 6567–6574 (1998). CASPubMed Google Scholar
Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med.5, 919–923 (1999). CASPubMed Google Scholar
Maldonado-Lopez, R. et al. CD8α+ and CD8α− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med.189, 587–592 (1999). CASPubMedPubMed Central Google Scholar
Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity13, 539–548 (2000). This paper provides clear evidence of the interplay of IRF3, -7 and -9 in the production of type I IFNs in response to viral infection. It describes the susceptibility ofIrf3−/−mice to viral infection. CASPubMed Google Scholar
Kimura, T. et al. Essential and non-redundant roles of p48 (ISGF3 γ) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes Cells1, 115–124 (1996). CASPubMed Google Scholar