- Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Rev. Immunol. 3, 984–993 (2003).
Article CAS Google Scholar
- Barreda, D. R., Hanington, P. C. & Belosevic, M. Regulation of myeloid development and function by colony stimulating factors. Dev. Comp. Immunol. 28, 509–554 (2004).
Article CAS PubMed Google Scholar
- Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).
Article CAS Google Scholar
- Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).
Article CAS PubMed Google Scholar
- Kusmartsev, S. & Gabrilovich, D. I. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol. Immunother. 51, 293–298 (2002).
Article CAS PubMed Google Scholar
- Serafini, P. et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 53, 64–72 (2003).
Article PubMed CAS Google Scholar
- Bronte, V., Serafini, P., Apolloni, E. & Zanovello, P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431–446 (2001).
Article CAS PubMed Google Scholar
- Baniyash, M. TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response. Nature Rev. Immunol. 4, 675–687 (2004).
Article CAS Google Scholar
- Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol. 4, 941–952 (2004).
Article CAS Google Scholar
- Strober, S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu. Rev. Immunol. 2, 219–237 (1984). This Review article reports early experimental data on the phenotypic and functional characteristics of NS cells and on the role of NS cells in the alloreactive immune response. It also predicts the involvement of these cells in the development of host-versus-graft and graft-versus-host tolerance in allogeneic bone-marrow chimeras.
Article CAS PubMed Google Scholar
- Holda, J. H., Maier, T. & Claman, H. N. Murine graft-versus-host disease across minor barriers: immunosuppressive aspects of natural suppressor cells. Immunol. Rev. 88, 87–105 (1985).
Article CAS PubMed Google Scholar
- Bronte, V. et al. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood 96, 3838–3846 (2000).
CAS PubMed Google Scholar
- Bronte, V. et al. Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 162, 5728–5737 (1999).
CAS PubMed Google Scholar
- Bronte, V. et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 161, 5313–5320 (1998).
CAS PubMed Google Scholar
- Fleming, T. J., Fleming, M. L. & Malek, T. R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6–8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J. Immunol. 151, 2399–2408 (1993).
CAS PubMed Google Scholar
- Leenen, P. J., de Bruijn, M. F., Voerman, J. S., Campbell, P. A. & van Ewijk, W. Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods 174, 5–19 (1994).
Article CAS PubMed Google Scholar
- Melani, C., Chiodoni, C., Forni, G. & Colombo, M. P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145 (2003).
Article CAS PubMed Google Scholar
- Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004). This paper, together with references 51 and 90, highlights the link between upregulation of ARG1 production by macrophages stimulated with T H 2 cytokines, tumour-associated myeloid cells and peripheral-blood myeloid cells, and downregulation of CD3ζ expression, which results in inhibition of antigen-specific T-cell responses.
Article CAS PubMed Google Scholar
- Li, Q., Pan, P. Y., Gu, P., Xu, D. & Chen, S. H. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 64, 1130–1139 (2004).
Article CAS PubMed Google Scholar
- Kusmartsev, S., Nefedova, Y., Yoder, D. & Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999 (2004).
Article CAS PubMed Google Scholar
- Kusmartsev, S. & Gabrilovich, D. I. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J. Immunol. 174, 4880–4891 (2005).
Article CAS PubMed Google Scholar
- Apolloni, E. et al. Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J. Immunol. 165, 6723–6730 (2000).
Article CAS PubMed Google Scholar
- Kusmartsev, S. et al. All-_trans_-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).
CAS PubMed Google Scholar
- Young, M. R. & Wright, M. A. Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: γ interferon plus tumor necrosis factor α synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Res. 52, 6335–6340 (1992).
CAS PubMed Google Scholar
- Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).
Article CAS PubMed Google Scholar
- Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).
Article CAS PubMed Google Scholar
- Elgert, K. D., Alleva, D. G. & Mullins, D. W. Tumor-induced immune dysfunction: the macrophage connection. J. Leukoc. Biol. 64, 275–290 (1998).
Article CAS PubMed Google Scholar
- Vig, M. et al. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J. Clin. Invest. 113, 1734–1742 (2004). Results reported in this paper, together with references 94–98, highlight the involvement of reactive free radicals — both ROS and RNOS, as well as their by-products — in the regulation of T-cell death and immunological memory.
Article CAS PubMed PubMed Central Google Scholar
- Bronte, V. et al. Boosting anti-tumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268 (2005). This is the first study showing that ARG and NOS activities in human prostate-cancer cells restrain the activation of TILs. It also indicates that peroxynitrites are involved as final mediators of the inhibitory pathways.
Article CAS PubMed PubMed Central Google Scholar
- Brys, L. et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J. Immunol. 174, 6095–6104 (2005).
Article CAS PubMed Google Scholar
- Serafini, P. et al. High-dose granulocyte–macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64, 6337–6343 (2004).
Article CAS PubMed Google Scholar
- De Santo, C. et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl Acad. Sci. USA 102, 4185–4190 (2005). This study analyses the effect of NO-releasing aspirin in mouse tumour models. The results show that, by interfering with the inhibitory enzymatic activities of myeloid cells, orally administered NO-releasing aspirin normalizes the immune status of tumour-bearing hosts, increases the number and function of tumour-antigen-specific T cells, and increases the preventive and therapeutic effectiveness of the antitumour immunity elicited by immunization with tumour antigens.
Article CAS PubMed PubMed Central Google Scholar
- Luiking, Y. C., Poeze, M., Dejong, C. H., Ramsay, G. & Deutz, N. E. Sepsis: an arginine deficiency state? Crit. Care Med. 32, 2135–2145 (2004).
Article CAS PubMed Google Scholar
- Bernard, A. C. et al. Alterations in arginine metabolic enzymes in trauma. Shock 15, 215–219 (2001).
Article CAS PubMed Google Scholar
- Wu, G. & Morris, S. M. Jr . Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Bogdan, C. Nitric oxide and the immune response. Nature Immunol. 2, 907–916 (2001). This comprehensive Review article summarizes recent findings about the role of NO in the immune response, indicating that this molecule and its derivatives have a much more pleiotropic role in infection and immunity than was initially thought. It is also suggested that NO is involved in thymic education.
Article CAS Google Scholar
- Vincendeau, P., Gobert, A. P., Daulouede, S., Moynet, D. & Djavad Mossalayi, M. Arginases in parasitic diseases. Trends Parasitol. 19, 9–12 (2003).
Article CAS PubMed Google Scholar
- Gobert, A. P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl Acad. Sci. USA 98, 13844–13849 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Iniesta, V., Gomez-Nieto, L. C. & Corraliza, I. The inhibition of arginase by _N_ω-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med. 193, 777–784 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with TH1/TH2 phenotype. J. Immunol. 160, 5347–5354 (1998).
CAS PubMed Google Scholar
- Munder, M. et al. TH1/TH2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163, 3771–3777 (1999).
CAS PubMed Google Scholar
- Boutard, V. et al. Transforming growth factor-β stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. J. Immunol. 155, 2077–2084 (1995).
CAS PubMed Google Scholar
- Morrison, A. C. & Correll, P. H. Activation of the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase by macrophage-stimulating protein results in the induction of arginase activity in murine peritoneal macrophages. J. Immunol. 168, 853–860 (2002).
Article CAS PubMed Google Scholar
- Jost, M. M. et al. Divergent effects of GM-CSF and TGFβ1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: a potential role during arteriogenesis. FASEB J. 17, 2281–2283 (2003).
Article CAS PubMed Google Scholar
- Morris, S. M. Jr . Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–105 (2002).
Article CAS PubMed Google Scholar
- Rutschman, R. et al. Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166, 2173–2177 (2001).
Article CAS PubMed Google Scholar
- Sinha, P., Clements, V. K. & Ostrand-Rosenberg, S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174, 636–645 (2005).
Article CAS PubMed Google Scholar
- Munder, M. et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556 (2005).
Article CAS PubMed Google Scholar
- Kim, J. W., Closs, E. I., Albritton, L. M. & Cunningham, J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352, 725–728 (1991).
Article CAS PubMed Google Scholar
- Mann, G. E., Yudilevich, D. L. & Sobrevia, L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol. Rev. 83, 183–252 (2003).
Article CAS PubMed Google Scholar
- Rodriguez, P. C. et al. L-Arginine consumption by macrophages modulates the expression of CD3 ζ chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).
Article CAS PubMed Google Scholar
- Alderton, W. K., Cooper, C. E. & Knowles, R. G. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Kleinert, H. et al. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK–STAT, AP-1 and NF-κB-signaling pathways. Br. J. Pharmacol. 125, 193–201 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Ganster, R. W., Taylor, B. S., Shao, L. & Geller, D. A. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat1 and NF-κB. Proc. Natl Acad. Sci. USA 98, 8638–8643 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Angulo, I. et al. Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-γ stimulation through a mechanism dependent on endogenous TNF-α and IL-1α. Eur. J. Immunol. 30, 1263–1271 (2000).
Article CAS PubMed Google Scholar
- Angulo, I. et al. Nitric oxide-producing D11b+Ly-6G(Gr-1)+CD31(ER-MP12)+ cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95, 212–220 (2000).
CAS PubMed Google Scholar
- Goni, O., Alcaide, P. & Fresno, M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1+)CD11b+ immature myeloid suppressor cells. Int. Immunol. 14, 1125–1134 (2002).
Article CAS PubMed Google Scholar
- Waddington, S. N., Mosley, K., Cook, H. T., Tam, F. W. & Cattell, V. Arginase AI is upregulated in acute immune complex-induced inflammation. Biochem. Biophys. Res. Commun. 247, 84–87 (1998).
Article CAS PubMed Google Scholar
- Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P. & Beschin, A. Alternatively activated macrophages during parasite infections. Trends Parasitol. 20, 126–133 (2004).
Article CAS PubMed Google Scholar
- Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M. & Zanovello, P. L-Arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24, 301–305 (2003).
Article CAS Google Scholar
- Bronte, V. et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278 (2003).
Article CAS PubMed Google Scholar
- Currie, G. A., Gyure, L. & Cifuentes, L. Microenvironmental arginine depletion by macrophages in vivo. Br. J. Cancer 39, 613–620 (1979).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, P. et al. The GCN2 eIF2α kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol. 22, 6681–6688 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. Jr. & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl Acad. Sci. USA 100, 4843–4848 (2003).
Article CAS PubMed PubMed Central Google Scholar
- El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003).
Article CAS PubMed Google Scholar
- Rohde, J., Heitman, J. & Cardenas, M. E. The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276, 9583–9586 (2001).
Article CAS PubMed Google Scholar
- Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling. Nature Cell Biol. 4, 699–704 (2002).
Article CAS PubMed Google Scholar
- Zhang, M. et al. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J. Exp. Med. 185, 1759–1768 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Fischer, T. A. et al. Activation of cGMP-dependent protein kinase Iβ inhibits interleukin 2 release and proliferation of T cell receptor-stimulated human peripheral T cells. J. Biol. Chem. 276, 5967–5974 (2001).
Article CAS PubMed Google Scholar
- Duhe, R. J. et al. Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl Acad. Sci. USA 95, 126–131 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Bingisser, R. M., Tilbrook, P. A., Holt, P. G. & Kees, U. R. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160, 5729–5734 (1998).
CAS PubMed Google Scholar
- Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).
Article CAS PubMed Google Scholar
- Macphail, S. E. et al. Nitric oxide regulation of human peripheral blood mononuclear cells: critical time dependence and selectivity for cytokine versus chemokine expression. J. Immunol. 171, 4809–4815 (2003).
Article CAS PubMed Google Scholar
- Pericle, F. et al. HIV-1 infection induces a selective reduction in STAT5 protein expression. J. Immunol. 160, 28–31 (1998).
CAS PubMed Google Scholar
- Pericle, F. et al. Immunocompromised tumor-bearing mice show a selective loss of STAT5a/b expression in T and B lymphocytes. J. Immunol. 159, 2580–2585 (1997).
CAS PubMed Google Scholar
- Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999).
Article CAS PubMed Google Scholar
- Fligger, J., Blum, J. & Jungi, T. W. Induction of intracellular arginase activity does not diminish the capacity of macrophages to produce nitric oxide in vitro. Immunobiology 200, 169–186 (1999).
Article CAS PubMed Google Scholar
- Xia, Y. & Zweier, J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl Acad. Sci. USA 94, 6954–6958 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Xia, Y., Roman, L. J., Masters, B. S. & Zweier, J. L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J. Biol. Chem. 273, 22635–22639 (1998).
Article CAS PubMed Google Scholar
- Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl Acad. Sci. USA 101, 4003–4008 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Schopfer, F. J., Baker, P. R. & Freeman, B. A. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem. Sci. 28, 646–654 (2003).
Article CAS PubMed Google Scholar
- Denicola, A., Souza, J. M. & Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl Acad. Sci. USA 95, 3566–3571 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Brito, C. et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J. Immunol. 162, 3356–3366 (1999).
CAS PubMed Google Scholar
- Aulak, K. S. et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl Acad. Sci. USA 98, 12056–12061 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Moulian, N., Truffault, F., Gaudry-Talarmain, Y. M., Serraf, A. & Berrih-Aknin, S. In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood 97, 3521–3530 (2001).
Article CAS PubMed Google Scholar
- Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunol. 3, 1129–1134 (2002).
Article CAS Google Scholar
- Kusmartsev, S. A., Li, Y. & Chen, S. H. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785 (2000).
Article CAS PubMed Google Scholar
- Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y. & Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl Acad. Sci. USA 93, 13119–13124 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).
CAS PubMed Google Scholar
- Zea, A. H. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).
Article CAS PubMed Google Scholar
- Hildeman, D. A. et al. Control of Bcl-2 expression by reactive oxygen species. Proc. Natl Acad. Sci. USA 100, 15035–15040 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626 (2002).
Article CAS Google Scholar
- Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol. 5, 809–817 (2004). References 92 and 93 explore the mechanisms that control the contraction phase of an antigen-specific CD8+ T-cell response. Data reported in reference 92 support a model in which the contraction of the CD8+ T-cell response is hardwired to occur independently of whether the host has successfully controlled the infection. Reference 93 also shows that the contraction of L. monocytogenes -specific CD8+ T-cell responses is controlled by inflammation and IFN-γ production in the early stages of infection.
Article CAS Google Scholar
- Laniewski, N. G. & Grayson, J. M. Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection. J. Virol. 78, 11246–11257 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Cauley, L. S., Miller, E. E., Yen, M. & Swain, S. L. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-γ. J. Immunol. 165, 6056–6066 (2000).
Article CAS PubMed Google Scholar
- Devadas, S., Zaritskaya, L., Rhee, S. G., Oberley, L. & Williams, M. S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and Fas ligand expression. J. Exp. Med. 195, 59–70 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).
Article CAS PubMed Google Scholar
- Hildeman, D. A., Mitchell, T., Kappler, J. & Marrack, P. T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575–581 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Bronstein-Sitton, N. et al. Sustained exposure to bacterial antigen induces interferon-γ-dependent T cell receptor ζ down-regulation and impaired T cell function. Nature Immunol. 4, 957–964 (2003).
Article CAS Google Scholar
- Xu, W., Liu, L., Smith, G. C. & Charles, G. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nature Cell Biol. 2, 339–345 (2000).
Article CAS PubMed Google Scholar
- Cederbaum, S. D. et al. Arginases I and II: do their functions overlap? Mol. Genet. Metab. 81, S38–S44 (2004).
Article CAS PubMed Google Scholar
- Chang, C. I., Liao, J. C. & Kuo, L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 61, 1100–1106 (2001).
CAS PubMed Google Scholar
- Davel, L. E. et al. Arginine metabolic pathways involved in the modulation of tumor-induced angiogenesis by macrophages. FEBS Lett. 532, 216–220 (2002).
Article CAS PubMed Google Scholar
- Schleifer, K. W. & Mansfield, J. M. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J. Immunol. 151, 5492–5503 (1993).
CAS PubMed Google Scholar
- Abrahamsohn, I. A. & Coffman, R. L. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. J. Immunol. 155, 3955–3963 (1995).
CAS PubMed Google Scholar
- Terrazas, L. I., Walsh, K. L., Piskorska, D., McGuire, E. & Harn, D. A. Jr . The schistosome oligosaccharide lacto-_N_-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J. Immunol. 167, 5294–5303 (2001).
Article CAS PubMed Google Scholar
- Mencacci, A. et al. CD80+Gr-1+ myeloid cells inhibit development of antifungal TH1 immunity in mice with candidiasis. J. Immunol. 169, 3180–3190 (2002).
Article CAS PubMed Google Scholar
- Zabaleta, J. et al. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR ζ-chain (CD3ζ). J. Immunol. 173, 586–593 (2004).
Article CAS PubMed Google Scholar
- Pelaez, B., Campillo, J. A., Lopez-Asenjo, J. A. & Subiza, J. L. Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J. Immunol. 166, 6608–6615 (2001).
Article CAS PubMed Google Scholar
- Billiau, A. D., Fevery, S., Rutgeerts, O., Landuyt, W. & Waer, M. Transient expansion of Mac1+ Ly6-G+ Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras. Possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102, 740–748 (2003).
Article CAS PubMed Google Scholar
- Vallance, P. & Leiper, J. Blocking NO synthesis: how, where and why? Nature Rev. Drug Discov. 1, 939–950 (2002).
Article CAS Google Scholar
- Colleluori, D. M. & Ash, D. E. Classical and slow-binding inhibitors of human type II arginase. Biochemistry 40, 9356–9362 (2001). References 111 and 112 focus on the rationale and potential for approaches that reduce the synthesis of NO and the activity of ARG, and they discuss the application of these approaches in clinical settings.
Article CAS PubMed Google Scholar
- Gupta, S. et al. Chemoprevention of prostate carcinogenesis by α-difluoromethylornithine in TRAMP mice. Cancer Res. 60, 5125–5133 (2000).
CAS PubMed Google Scholar
- Wallace, J. L., Ignarro, L. J. & Fiorucci, S. Potential cardioprotective actions of NO-releasing aspirin. Nature Rev. Drug Discov. 1, 375–382 (2002).
Article CAS Google Scholar
- Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).
Article CAS Google Scholar
- Fenyk-Melody, J. E. et al. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J. Immunol. 160, 2940–2946 (1998).
CAS PubMed Google Scholar
- Shi, F. D. et al. Control of the autoimmune response by type 2 nitric oxide synthase. J. Immunol. 167, 3000–3006 (2001).
Article CAS PubMed Google Scholar
- Grohmann, U. et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J. Exp. Med. 198, 153–160 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Fallarino, F. et al. CTLA-4–Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J. Exp. Med. 200, 1051–1062 (2004).
Article CAS PubMed PubMed Central Google Scholar
- de Jonge, W. J. et al. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J. Clin. Invest. 110, 1539–1548 (2002). This study shows that the impaired transition from pro-B cells to precursor-B cells in the bone marrow of transgenic mice is characterized by high expression of ARG1 in enterocytes, thereby indicating that a signal-transduction molecule associated with L -arginine metabolism might be involved in B-cell maturation.
Article CAS PubMed PubMed Central Google Scholar
- Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M. & Ignarro, L. J. _N_G-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R1256–R1264 (1998).
Article CAS Google Scholar
- Blachier, F., Mignon, A. & Soubrane, O. Polyamines inhibit lipopolysaccharide-induced nitric oxide synthase activity in rat liver cytosol. Nitric Oxide 1, 268–272 (1997).
Article CAS PubMed Google Scholar
- Meurs, H., Maarsingh, H. & Zaagsma, J. Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol. Sci. 24, 450–455 (2003).
Article CAS PubMed Google Scholar
- Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).
CAS PubMed Google Scholar
- Young, M. R., Wright, M. A. & Young, M. E. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol. Immunother. 33, 146–152 (1991).
Article CAS PubMed Google Scholar
- Passegue, E., Jochum, W., Schorpp-Kistner, M., Mohle-Steinlein, U. & Wagner, E. F. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell 104, 21–32 (2001).
Article CAS PubMed Google Scholar
- Ghansah, T. et al. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J. Immunol. 173, 7324–7330 (2004).
Article CAS PubMed Google Scholar
- Welte, T. et al. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc. Natl Acad. Sci. USA 100, 1879–1884 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Kuwata, T. et al. Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood 95, 3349–3356 (2000).
CAS PubMed Google Scholar
- Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).
Article CAS Google Scholar
- Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).
Article CAS PubMed Google Scholar
- Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the TH1/TH2 paradigm. J. Immunol. 164, 6166–6173 (2000).
Article CAS PubMed Google Scholar
- Chon, S. Y., Hassanain, H. H. & Gupta, S. L. Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-γ-inducible expression of human indoleamine 2,3-dioxygenase gene. J. Biol. Chem. 271, 17247–17252 (1996).
Article CAS PubMed Google Scholar
- Weiner, C. P., Knowles, R. G., Stegink, L. D., Dawson, J. & Moncada, S. Myometrial arginase activity increases with advancing pregnancy in the guinea pig. Am. J. Obstet. Gynecol. 174, 779–782 (1996).
Article CAS PubMed Google Scholar
- Mellor, A. L. et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunol. 2, 64–68 (2001).
Article CAS Google Scholar
- Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Med. 9, 1269–1274 (2003).
Article CAS PubMed Google Scholar
- Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Saio, M., Radoja, S., Marino, M. & Frey, A. B. Tumor-infiltrating macrophages induce apoptosis in activated CD8+ T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J. Immunol. 167, 5583–5593 (2001).
Article CAS PubMed Google Scholar
- Hongo, D., Bryson, J. S., Kaplan, A. M. & Cohen, D. A. Endogenous nitric oxide protects against T cell-dependent lethality during graft-versus-host disease and idiopathic pneumonia syndrome. J. Immunol. 173, 1744–1756 (2004).
Article CAS PubMed Google Scholar
- Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003).
Article CAS Google Scholar
- MacDonald, K. P. et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J. Immunol. 174, 1841–1850 (2005). This study establishes a relationship between MSCs and regulatory T cells. Using granulocyte-colony-stimulating-factor-mobilized, bone-marrow-derived CD11b+GR1+ cells in a model of allogeneic transplantation, this article shows the proliferation of IL-10-secreting and antigen-specific regulatory T cells that attenuate graft-versus-host disease but not graft-versus-leukaemia effects.
Article CAS PubMed Google Scholar
- Hucke, C., MacKenzie, C. R., Adjogble, K. D., Takikawa, O. & Daubener, W. Nitric oxide-mediated regulation of γ interferon-induced bacteriostasis: inhibition and degradation of human indoleamine 2,3-dioxygenase. Infect. Immun. 72, 2723–2730 (2004).
Article CAS PubMed PubMed Central Google Scholar