Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation (original) (raw)
Raskin, D. M., Seshadri, R., Pukatzki, S. U. & Mekalanos, J. J. Bacterial genomics and pathogen evolution. Cell124, 703–714 (2006). ArticleCASPubMed Google Scholar
Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell124, 715–727 (2006). ArticleCASPubMed Google Scholar
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol.4, 499–511 (2004). ArticleCAS Google Scholar
Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol.6, 9–20 (2006). ArticleCAS Google Scholar
Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol.6, 183–195 (2006). ArticleCAS Google Scholar
Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem.74, 355–383 (2005). ArticleCASPubMed Google Scholar
Kufer, T. A., Fritz, J. H. & Philpott, D. J. NACHT-LRR proteins (NLRs) in bacterial infection and immunity. Trends Microbiol.13, 381–388 (2005). ArticleCASPubMed Google Scholar
Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol.5, 1166–1174 (2004). ArticleCAS Google Scholar
Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and _Naip5_-mediated macrophage immunity. PLoS Pathog.2, e18 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol.7, 569–575 (2006). ArticleCAS Google Scholar
Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol.7, 576–582 (2006). References 10 and 11 provide evidence that caspase-1 is activated in response to flagellin that is secreted by the intracellular pathogenS. typhimuriumin an IPAF-dependent manner. ArticleCAS Google Scholar
Philpott, D. J. & Girardin, S. E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol.41, 1099–1108 (2004). ArticleCASPubMed Google Scholar
Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature442, 39–44 (2006). ArticleCASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β. Mol. Cell10, 417–426 (2002). The first description of the caspase-1 inflammasome. ArticleCASPubMed Google Scholar
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23, 479–490 (2005). ArticleCASPubMed Google Scholar
Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell126, 1135–1145 (2006). Describes the role of caspase-1 in activating lipid metabolic pathways in fibroblasts. ArticleCASPubMed Google Scholar
Tschopp, J., Irmler, M. & Thome, M. Inhibition of Fas death signals by FLIPs. Curr. Opin. Immunol.10, 552–558 (1998). ArticleCASPubMed Google Scholar
Chu, Z. L. et al. A novel enhancer of the Apaf1 apoptosome involved in cytochrome _c_-dependent caspase activation and apoptosis. J. Biol. Chem.276, 9239–9245 (2001). ArticleCASPubMed Google Scholar
Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 15 September 2006 (doi: 10.1038/sj.cdd.4402038).
Sutterwala, F. S., Ogura, Y., Zamboni, D. S., Roy, C. R. & Flavell, R. A. NALP3: a key player in caspase-1 activation. J. Endotoxin Res.12, 251–256 (2006). ArticleCASPubMed Google Scholar
Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell stress. Cell126, 659–662 (2006). ArticleCASPubMed Google Scholar
Drenth, J. P. & van der Meer, J. W. The inflammasome — a linebacker of innate defense. N. Engl. J. Med.355, 730–732 (2006). ArticleCASPubMed Google Scholar
Franchi, L., McDonald, C., Kanneganti, T. D., Amer, A. & Nunez, G. Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J. Immunol.177, 3507–3513 (2006). ArticleCASPubMed Google Scholar
Masumoto, J. et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem.274, 33835–33838 (1999). ArticleCASPubMed Google Scholar
Conway, K. E. et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res.60, 6236–6242 (2000). CASPubMed Google Scholar
Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117, 561–574 (2004). ArticleCASPubMed Google Scholar
Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity20, 319–325 (2004). ArticleCASPubMed Google Scholar
Dowds, T. A., Masumoto, J., Zhu, L., Inohara, N. & Nunez, G. Cryopyrin-induced interleukin 1β secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J. Biol. Chem.279, 21924–21928 (2004). ArticleCASPubMed Google Scholar
Yu, J. W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ.13, 236–249 (2006). ArticleCASPubMed Google Scholar
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nature Genet.29, 301–305 (2001). Describes the first evidence for an association between NALP3/cryopyrin variants and Muckle–Wells syndrome. ArticleCASPubMed Google Scholar
McDermott, M. F. & Aksentijevich, I. The autoinflammatory syndromes. Curr. Opin. Allergy Clin. Immunol.2, 511–516 (2002). ArticlePubMed Google Scholar
Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet.71, 198–203 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). Describes NALP3/cyropyrin deficient mice and its requirement for inflammsome activation in response to toxins, ATP,S. aureus, andL. monocytogenes. ArticleCASPubMed Google Scholar
Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature440, 233–236 (2006). Describes NALP3-deficient mice and its requirement for inflammasome activation in response to bacterial RNA and small antiviral compounds. ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). Describes NALP3 involvement in inflammasome activation in response to danger signals such as uric acid crystals. ArticleCASPubMed Google Scholar
Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity24, 317–327 (2006). ArticleCASPubMed Google Scholar
Geddes, B. J. et al. Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem. Biophys. Res. Commun.284, 77–82 (2001). ArticleCASPubMed Google Scholar
Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem.276, 28309–28313 (2001). ArticleCASPubMed Google Scholar
Messud-Petit, F. et al. Serp2, an inhibitor of the interleukin-1β-converting enzyme, is critical in the pathobiology of myxoma virus. J. Virol.72, 7830–7839 (1998). ArticleCASPubMedPubMed Central Google Scholar
Johnston, J. B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity23, 587–598 (2005). ArticleCASPubMed Google Scholar
Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430, 213–218 (2004). Describes the role of ASC in response to ATP and of ASC and IPAF in response to the intracellular pathogenS. typhimurium. ArticleCASPubMed Google Scholar
Thornberry, N. A. & Molineaux, S. M. Interleukin-1β converting enzyme: a novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Sci.4, 3–12 (1995). ArticleCASPubMedPubMed Central Google Scholar
Burns, K., Martinon, F. & Tschopp, J. New insights into the mechanism of IL-1β maturation. Curr. Opin. Immunol.15, 26–30 (2003). ArticleCASPubMed Google Scholar
Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell92, 501–509 (1998). ArticleCASPubMed Google Scholar
Hogquist, K. A., Nett, M. A., Unanue, E. R. & Chaplin, D. D. Interleukin 1 is processed and released during apoptosis. Proc. Natl Acad. Sci. USA88, 8485–8489 (1991). ArticleCASPubMedPubMed Central Google Scholar
Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem.276, 125–132 (2001). ArticleCASPubMed Google Scholar
Di Virgilio, F., Baricordi, O. R., Romagnoli, R. & Baraldi, P. G. Leukocyte P2 receptors: a novel target for anti-inflammatory and anti-tumor therapy. Curr. Drug Targets Cardiovasc. Haematol. Disord.5, 85–99 (2005). ArticleCASPubMed Google Scholar
Perregaux, D. & Gabel, C. A. Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem.269, 15195–15203 (1994). ArticleCASPubMed Google Scholar
Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J.14, 1607–1614 (1995). ArticleCASPubMedPubMed Central Google Scholar
Walev, I. et al. Potassium regulates IL-1β processing via calcium-independent phospholipase A2 . J. Immunol.164, 5120–5124 (2000). ArticleCASPubMed Google Scholar
Andrei, C. et al. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: Implications for inflammatory processes. Proc. Natl Acad. Sci. USA101, 9745–9750 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells9, 1055–1067 (2004). ArticleCASPubMed Google Scholar
Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science267, 2000–2003 (1995). ArticleCASPubMed Google Scholar
Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell80, 401–411 (1995). ArticleCASPubMed Google Scholar
Ozoren, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol.176, 4337–4342 (2006). ArticlePubMed Google Scholar
Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J.15, 3853–3860 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA96, 2396–2401 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hilbi, H. et al. _Shigella_-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem.273, 32895–32900 (1998). ArticleCASPubMed Google Scholar
Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for _Shigella flexneri_-induced inflammation. Immunity12, 581–590 (2000). ArticleCASPubMed Google Scholar
Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun.74 (2006).
Galan, J. E. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol.17, 53–86 (2001). ArticleCASPubMed Google Scholar
Goosney, D. L., Knoechel, D. G. & Finlay, B. B. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg. Infect. Dis.5, 216–223 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science304, 242–248 (2004). ArticleCASPubMed Google Scholar
Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol.51, 483–495 (2004). ArticleCASPubMed Google Scholar
Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol.7, 318–325 (2006). Describes the requirement of NAIP5/Birc1e and IPAF for recognition of the intracellular pathogenL. pneumophilaand activation of the inflammasome. ArticleCAS Google Scholar
Yamamoto, Y., Klein, T. W., Newton, C. A., Widen, R. & Friedman, H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect. Immun.56, 370–375 (1988). ArticleCASPubMedPubMed Central Google Scholar
Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nature Genet.33, 55–60 (2003). ArticleCASPubMed Google Scholar
Wright, E. K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol.13, 27–36 (2003). ArticleCASPubMed Google Scholar
Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol.9, 323–328 (1999). ArticleCASPubMed Google Scholar
Damiano, J. S., Oliveira, V., Welsh, K. & Reed, J. C. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem. J.381, 213–219 (2004). ArticleCASPubMedPubMed Central Google Scholar
Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med.203, 1093–1104 (2006). References 9 and 73 provide evidence that caspase-1 is activated in response to flagellin that is secreted by the intracellular pathogenL. pneumophila. ArticleCASPubMedPubMed Central Google Scholar
Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science304, 1515–1518 (2004). ArticleCASPubMed Google Scholar
Mariathasan, S., Weiss, D. S., Dixit, V. M. & Monack, D. M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med.202, 1043–1049 (2005). Describes the role of ASC in activating the inflammasome in response to the intracellular pathogenF. tularensis. ArticleCASPubMedPubMed Central Google Scholar
Gavrilin, M. A. et al. Internalization and phagosome escape required for Francisella to induce human monocyte IL-1β processing and release. Proc. Natl Acad. Sci. USA103, 141–146 (2006). ArticleCASPubMed Google Scholar
Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett.530, 73–78 (2002). ArticleCASPubMed Google Scholar
Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J. Biol. Chem.277, 29874–29880 (2002). ArticleCASPubMed Google Scholar
Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet.38, 240–244 (2006). ArticleCASPubMed Google Scholar
Annand, R. R. et al. Caspase-1 (interleukin-1β-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Biochem. J.342, 655–665 (1999). ArticleCASPubMedPubMed Central Google Scholar
Saleh, M. et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature440, 1064–1068 (2006). ArticleCASPubMed Google Scholar
Humke, E. W., Shriver, S. K., Starovasnik, M. A., Fairbrother, W. J. & Dixit, V. M. ICEBERG: a novel inhibitor of interleukin-1β generation. Cell103, 99–111 (2000). ArticleCASPubMed Google Scholar
Druilhe, A., Srinivasula, S. M., Razmara, M., Ahmad, M. & Alnemri, E. S. Regulation of IL-1β generation by pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ.8, 649–657 (2001). ArticleCASPubMed Google Scholar
Lee, S. H., Stehlik, C. & Reed, J. C. COP, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J. Biol. Chem.276, 34495–34500 (2001). ArticleCASPubMed Google Scholar
Razmara, M. et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J. Biol. Chem.277, 13952–13958 (2002). ArticleCASPubMed Google Scholar
Lamkanfi, M. et al. INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1β generation. J. Biol. Chem.279, 51729–51738 (2004). ArticleCASPubMed Google Scholar
Aksentijevich, I. et al. Mutation and haplotype studies of familial Mediterranean fever reveal new ancestral relationships and evidence for a high carrier frequency with reduced penetrance in the Ashkenazi Jewish population. Am. J. Hum. Genet.64, 949–962 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chae, J. J. et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell11, 591–604 (2003). ArticleCASPubMed Google Scholar
Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA103, 9982–9987 (2006). ArticleCASPubMedPubMed Central Google Scholar