The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery (original) (raw)
Sakaguchi, S. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995). CASPubMed Google Scholar
Tada, T. & Takemori, T. Selective roles of thymus derived lymphocytes in the antibody response. I. Differential suppressive effect of carrier primed T cells on hapten specific IgM and IgG antibody responses. J. Exp. Med.140, 239–252 (1974). ArticleCASPubMedPubMed Central Google Scholar
Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell101, 455–458 (2000). ArticleCASPubMed Google Scholar
Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol.2, 389–400 (2002). ArticleCAS Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003). ArticleCASPubMed Google Scholar
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330–336 (2003). ArticleCAS Google Scholar
Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet.39, 537–545 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bluestone, J. A. Regulatory T-cell therapy: is it ready for the clinic? Nature Rev. Immunol.5, 343–349 (2005). ArticleCAS Google Scholar
O'Neill, E. J. et al. Natural and induced regulatory T cells. Ann. NY Acad. Sci.1029, 180–192 (2004). ArticleCASPubMed Google Scholar
Sheridan, C. TeGenero fiasco prompts regulatory rethink. Nature Biotech.24, 475–476 (2006). ArticleCAS Google Scholar
Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA103, 6659–6664 (2006). ArticleCASPubMedPubMed Central Google Scholar
Walker, M. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25− T cells. J. Clin. Invest.112, 1437–1443 (2003). ArticleCASPubMed Google Scholar
Yagi, H. et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol.16, 1643–1656 (2004). ArticleCASPubMed Google Scholar
Roncador, G. et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol.35, 1681–1691 (2005). ArticleCASPubMed Google Scholar
Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med.203, 1701–1711 (2006). ArticleCASPubMedPubMed Central Google Scholar
Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203, 1693–1700 (2006). ArticleCASPubMedPubMed Central Google Scholar
Seddiki, N. et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood107, 2830–2838 (2006). ArticleCASPubMed Google Scholar
Fritzsching, B. et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood108, 3371–3378 (2006). ArticleCASPubMed Google Scholar
Picca, C. C. & Caton, A. J. The role of self-peptides in the development of CD4+ CD25+ regulatory T cells. Curr. Opin. Immunol.17, 131–136 (2005). ArticleCASPubMed Google Scholar
Mackall, C. L. & Gress, R. E. Thymic aging and T-cell regeneration. Immunol. Rev.160, 91–102 (1997). ArticleCASPubMed Google Scholar
Gregg, R. et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin. Exp. Immunol.140, 540–546 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest.116, 2423–2433 (2006). ArticleCASPubMedPubMed Central Google Scholar
Akbar, A. N., Taams, L. S., Salmon, M. & Vukmanovic-Stejic, M. The peripheral generation of CD4+ CD25+ regulatory T cells. Immunology109, 319–325 (2003). ArticleCASPubMedPubMed Central Google Scholar
Taams, L. S. et al. Human anergic/suppressive CD4+CD25+T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001). ArticleCASPubMed Google Scholar
Fritzsching, B. et al. Cutting edge: in contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J. Immunol.175, 32–36 (2005). ArticleCASPubMed Google Scholar
Cozzo, C., Larkin, J., III & Caton, A. J. Cutting edge: self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J. Immunol.171, 5678–5682 (2003). ArticleCASPubMed Google Scholar
Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl Acad. Sci. USA100, 8886–8891 (2003). ArticleCASPubMedPubMed Central Google Scholar
Earle, K. E. et al. In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin. Immunol.115, 3–9 (2005). ArticleCASPubMed Google Scholar
Hoffmann, P. et al. Large-scale in vitro expansion of polyclonal human CD4+CD25high regulatory T cells. Blood104, 895–903 (2004). ArticleCASPubMed Google Scholar
Godfrey, W. R. et al. _In vitro_-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood104, 453–461 (2004). ArticleCASPubMed Google Scholar
Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med.198, 235–247 (2003). ArticleCASPubMedPubMed Central Google Scholar
Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol.162, 5317–5326 (1999). CASPubMed Google Scholar
Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001). ArticleCASPubMed Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dieckmann, D. et al. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.193, 1303–1310 (2001). ArticleCASPubMedPubMed Central Google Scholar
Knoechel, B. et al. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med.202, 1375–1386 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol.6, 1219–1227 (2005). ArticleCAS Google Scholar
Akbar, A. N., Beverley, P. C. & Salmon, M. Will telomere erosion lead to a loss of T-cell memory? Nature Rev. Immunol.4, 737–743 (2004). ArticleCAS Google Scholar
Hodes, R. J., Hathcock, K. S. & Weng, N. P. Telomeres in T and B cells. Nature Rev. Immunol.2, 699–706 (2002). ArticleCAS Google Scholar
Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med.198, 737–746 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. Increased population of CD4+CD25high, regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur. J. Haematol.75, 468–476 (2005). ArticlePubMed Google Scholar
Taams, L. S. et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol.32, 1621–1630 (2002). ArticleCASPubMed Google Scholar
Curotto de Lafaille, M. A., Lino, A. C., Kutchukhidze, N. & Lafaille, J. J. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol.173, 7259–7268 (2004). ArticleCASPubMed Google Scholar
Chen, W. et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198, 1875–1886 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kasow, K. A. et al. Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+. J. Immunol.172, 6123–6128 (2004). ArticleCASPubMed Google Scholar
Hayashi, Y. et al. Antigen-specific T cell repertoire modification of CD4+CD25+ regulatory T cells. J. Immunol.172, 5240–5248 (2004). ArticleCASPubMed Google Scholar
Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol.172, 5149–5153 (2004). ArticleCASPubMed Google Scholar
Zheng, S. G. et al. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25− precursors. J. Immunol.169, 4183–4189 (2002). ArticleCASPubMed Google Scholar
Wang, Z. et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25− T cells to CD4+ Tregs. J. Clin. Invest.116, 2434–2441 (2006). CASPubMedPubMed Central Google Scholar
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737–742 (1997). ArticleCASPubMed Google Scholar
Miller, A. et al. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl Acad. Sci. USA89, 421–425 (1992). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science265, 1237–1240 (1994). ArticleCASPubMed Google Scholar
Chai, J. G. et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol.29, 686–692 (1999). ArticleCASPubMed Google Scholar
Taams, L. S. et al. Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol.28, 2902–2912 (1998). ArticleCASPubMed Google Scholar
Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science264, 1587–1589 (1994). ArticleCASPubMed Google Scholar
Grimbert, P. et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+CD25− T cells in response to inflammation. J. Immunol.177, 3534–3541 (2006). ArticleCASPubMed Google Scholar
Grogan, J. L. & Locksley, R. M. T helper cell differentiation: on again, off again. Curr. Opin. Immunol.14, 366–372 (2002). ArticleCASPubMed Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163, 5211–5218 (1999). CASPubMed Google Scholar
Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115, 3623–3633 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med.202, 919–929 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood108, 1571–1579 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood107, 2409–2414 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nature Med.11, 1238–1243 (2005). ArticleCASPubMed Google Scholar
Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199, 971–979 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med.200, 277–285 (2004). ArticleCASPubMedPubMed Central Google Scholar
van Amelsfort, J. M. et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum.50, 2775–2785 (2004). ArticlePubMed Google Scholar
Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes54, 92–99 (2005). ArticleCASPubMed Google Scholar
Verhagen, J. et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J. Allergy Clin. Immunol.117, 176–183 (2006). ArticleCASPubMed Google Scholar
Fletcher, J. M. et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J. Immunol.175, 8218–8225 (2005). ArticleCASPubMed Google Scholar
Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol.169, 1984–1992 (2002). ArticleCASPubMed Google Scholar
Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med.8, 379–385 (2002). ArticleCASPubMed Google Scholar
Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol.17, 480–485 (2005). ArticleCASPubMed Google Scholar
Mitchison, N. A. Induction of immunological paralysis in two zones of dosage. Proc. R. Soc. Lond. B Biol. Sci.161, 275–292 (1964). ArticleCASPubMed Google Scholar
Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol.167, 188–195 (2001). ArticleCASPubMed Google Scholar
Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med.9, 1202–1208 (2003). ArticleCASPubMed Google Scholar
Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Rev. Immunol.3, 123–132 (2003). ArticleCAS Google Scholar
Francis, J. N., Till, S. J. & Durham, S. R. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J. Allergy Clin. Immunol.111, 1255–1261 (2003). ArticleCASPubMed Google Scholar
Smith, T. R. et al. Cat allergen peptide immunotherapy reduces CD4+ T cell responses to cat allergen but does not alter suppression by CD4+ CD25+ T cells: a double-blind placebo-controlled study. Allergy59, 1097–1101 (2004). ArticleCASPubMed Google Scholar
Gardner, L. M. et al. Induction of T 'regulatory' cells by standardized house dust mite immunotherapy: an increase in CD4+ CD25+ interleukin-10+ T cells expressing peripheral tissue trafficking markers. Clin. Exp. Allergy34, 1209–1219 (2004). ArticleCASPubMed Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Izikson, L., Liu, L. & Weiner, H. L. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J. Immunol.167, 4245–4253 (2001). ArticleCASPubMed Google Scholar
Shimizu, J. et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol.3, 135–142 (2002). ArticleCAS Google Scholar
Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol.31, 1247–1254 (2001). ArticleCASPubMed Google Scholar
Walker, M. R. et al. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25− cells. Proc. Natl Acad. Sci. USA102, 4103–4108 (2005). ArticleCASPubMedPubMed Central Google Scholar
Skapenko, A., Kalden, J. R., Lipsky, P. E. & Schulze-Koops, H. The IL-4 receptor a-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25−CD4+ precursors. J. Immunol.175, 6107–6116 (2005). ArticleCASPubMed Google Scholar
Levings, M. K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol.166, 5530–5539 (2001). ArticleCASPubMed Google Scholar
Barrat, F. J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med.195, 603–616 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chang, C. C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunol.3, 237–243 (2002). ArticleCAS Google Scholar
Michie, C. A., McLean, A., Alcock, C. & Beverley, P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature360, 264–265 (1992). ArticleCASPubMed Google Scholar
Tough, D. F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med.179, 1127–1135 (1994). ArticleCASPubMed Google Scholar
Macallan, D. C. et al. Measurement and modeling of human T cell kinetics. Eur. J. Immunol.33, 2316–2326 (2003). ArticleCASPubMed Google Scholar
Hellerstein, M. K. et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest.112, 956–966 (2003). ArticleCASPubMedPubMed Central Google Scholar
Liang, S. et al. Conversion of CD4+CD25− cells into CD4+CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med.201, 127–137 (2005). ArticleCASPubMedPubMed Central Google Scholar
Morgan, M. E. et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol.66, 13–20 (2005). ArticleCASPubMed Google Scholar
Zheng, S. G. et al. Natural and induced CD4+CD25+ cells educate CD4+CD25− cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol.172, 5213–5221 (2004). ArticleCASPubMed Google Scholar