Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes (original) (raw)
Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). CASPubMed Google Scholar
Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell124, 815–822 (2006). ArticleCASPubMed Google Scholar
Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol.1, 177–186 (2001). ArticleCAS Google Scholar
Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity14, 617–629 (2001). ArticleCASPubMed Google Scholar
Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol.2, 323–335 (2002). References 3 and 5 describe the function, ontogeny and reactivity of MZ B cells. CAS Google Scholar
Treml, L. S. et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J. Immunol.178, 7531–7539 (2007). ArticleCASPubMed Google Scholar
He, B. et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunol.11, 836–845 (2010). This was the first demonstration that BAFF and APRIL activate B cells through a signalling pathway involving the TLR-associated protein MYD88. ArticleCAS Google Scholar
Pone, E. J. et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nature Commun.3, 767 (2012). This was the first demonstration that TI antigens trigger B cell activation and class switching by co-engaging BCRs and TLRs. ArticleCAS Google Scholar
Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nature Rev. Immunol.5, 606–616 (2005). This article provides an overview of the structure, vascularization, cell composition and function of the spleen in mice and humans. CAS Google Scholar
Chen, Y. et al. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J. Immunol.175, 8173–8180 (2005). ArticleCASPubMed Google Scholar
Kang, Y. S. et al. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell125, 47–58 (2006). This work shows that MZ macrophages generate innate immune responses against encapsulated bacteria via an antibody-independent mechanism involving the uptake receptor SIGNR1 and an unusual complement activation pathway. ArticleCASPubMed Google Scholar
Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity23, 503–514 (2005). ArticleCASPubMed Google Scholar
Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nature Rev. Immunol.9, 15–27 (2009). This article provides an overview of the localization and mechanisms of antigen recognition by B cells. ArticleCAS Google Scholar
Balázs, M., Martin, F., Zhou, T. & Kearney, J. F. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity17, 341–352 (2002). ArticlePubMed Google Scholar
Colino, J., Shen, Y. & Snapper, C. M. Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms. J. Exp. Med.195, 1–13 (2002). References 14 and 15 demonstrate that DCs interact with MZ B cells to induce antibody responses against blood-borne microorganisms. ArticleCASPubMedPubMed Central Google Scholar
Steiniger, B., Barth, P. & Hellinger, A. The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration? Am. J. Pathol.159, 501–512 (2001). ArticleCASPubMedPubMed Central Google Scholar
Steiniger, B., Timphus, E. & Barth, P. The splenic marginal zone in humans and rodents: an enigmatic compartment and its inhabitants. Histochem. Cell Biol.126, 641–648 (2006). ArticleCASPubMed Google Scholar
Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nature Immunol.13, 170–180 (2012). This paper indicates that neutrophils provide unconventional help to human MZ B cells to generate antibodies specific for conserved microbial structures. ArticleCAS Google Scholar
Spencer, J., Finn, T., Pulford, K. A., Mason, D. Y. & Isaacson, P. G. The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin. Exp. Immunol.62, 607–612 (1985). CASPubMedPubMed Central Google Scholar
Tierens, A., Delabie, J., Michiels, L., Vandenberghe, P. & De Wolf-Peeters, C. Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood93, 226–234 (1999). CASPubMed Google Scholar
Dono, M. et al. Heterogeneity of tonsillar subepithelial B lymphocytes, the splenic marginal zone equivalents. J. Immunol.164, 5596–5604 (2000). ArticleCASPubMed Google Scholar
Weill, J. C., Weller, S. & Reynaud, C. A. Human marginal zone B cells. Annu. Rev. Immunol.27, 267–285 (2009). This article provides an updated overview of the differences between human and mouse MZ B cells. ArticleCASPubMed Google Scholar
Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood104, 3647–3654 (2004). This was the first demonstration that MZ B cells recirculate in humans. ArticleCASPubMed Google Scholar
Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood118, 2150–2158 (2011). This work provides molecular evidence that human MZ B cells are distinct from canonical memory B cells and may originate outside the germinal centre. ArticleCASPubMedPubMed Central Google Scholar
Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol.1, 31–36 (2000). This work demonstrates the essential role of MZ B cells in early antibody responses to TI antigens in mice. ArticleCAS Google Scholar
Amlot, P. L. & Hayes, A. E. Impaired human antibody response to the thymus-independent antigen, DNP-Ficoll, after splenectomy. Implications for post-splenectomy infections. Lancet1, 1008–1011 (1985). ArticleCASPubMed Google Scholar
Kruetzmann, S. et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med.197, 939–945 (2003). ArticleCASPubMedPubMed Central Google Scholar
Castagnola, E. & Fioredda, F. Prevention of life-threatening infections due to encapsulated bacteria in children with hyposplenia or asplenia: a brief review of current recommendations for practical purposes. Eur. J. Haematol.71, 319–326 (2003). ArticlePubMed Google Scholar
Wasserstrom, H., Bussel, J., Lim, L. C. & Cunningham-Rundles, C. Memory B cells and pneumococcal antibody after splenectomy. J. Immunol.181, 3684–3689 (2008). ArticleCASPubMed Google Scholar
Di Sabatino, A. et al. Depletion of immunoglobulin M memory B cells is associated with splenic hypofunction in inflammatory bowel disease. Am. J. Gastroenterol.100, 1788–1795 (2005). References 27–31 indicate that human MZ B cells mediate protective antibody responses to encapsulated bacteria. ArticleCASPubMed Google Scholar
Traggiai, E. et al. Selective preservation of bone marrow mature recirculating but not marginal zone B cells in murine models of chronic inflammation. PLoS ONE5, e11262 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Carsetti, R. et al. The loss of IgM memory B cells correlates with clinical disease in common variable immunodeficiency. J. Allergy Clin. Immunol.115, 412–417 (2005). ArticleCASPubMed Google Scholar
Hart, M. et al. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J. Immunol.178, 8212–8220 (2007). ArticleCASPubMed Google Scholar
Weller, S. et al. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88- and TIRAP- but not UNC-93B-deficient patients. Blood120, 4992–5001 (2012). This was the first demonstration that the maintenance of human MZ B cells is highly dependent on signals from TLRs. ArticleCASPubMedPubMed Central Google Scholar
Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Rev. Immunol.9, 767–777 (2009). This article provides an overview of the ontogeny of MZ B cells. ArticleCAS Google Scholar
Szomolanyi-Tsuda, E. & Welsh, R. M. T-cell-independent antiviral antibody responses. Curr. Opin. Immunol.10, 431–435 (1998). ArticleCASPubMed Google Scholar
Gatto, D., Ruedl, C., Odermatt, B. & Bachmann, M. F. Rapid response of marginal zone B cells to viral particles. J. Immunol.173, 4308–4316 (2004). ArticleCASPubMed Google Scholar
Galili, U., Rachmilewitz, E. A., Peleg, A. & Flechner, I. A unique natural human IgG antibody with anti-α-galactosyl specificity. J. Exp. Med.160, 1519–1531 (1984). ArticleCASPubMed Google Scholar
Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science286, 2156–2159 (1999). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol.4, 478–485 (2004). ArticleCAS Google Scholar
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122, 107–118 (2005). ArticleCASPubMed Google Scholar
Wei, B. et al. Resident enteric microbiota and CD8+ T cells shape the abundance of marginal zone B cells. Eur. J. Immunol.38, 3411–3425 (2008). ArticleCASPubMedPubMed Central Google Scholar
Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Med.16, 228–231 (2010). This was the first demonstration that molecules from the commensal microbiota enhance innate immunity after translocating from the intestine to the general circulation. ArticleCASPubMed Google Scholar
Lamouse-Smith, E. S., Tzeng, A. & Starnbach, M. N. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice. PLoS ONE6, e27662 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bos, N. A. et al. Serum immunoglobulin levels and naturally occurring antibodies against carbohydrate antigens in germ-free BALB/c mice fed chemically defined ultrafiltered diet. Eur. J. Immunol.19, 2335–2339 (1989). ArticleCASPubMed Google Scholar
Butler, J. E. et al. Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. J. Immunol.165, 6999–7010 (2000). ArticleCASPubMed Google Scholar
Kool, J. et al. Detection of intestinal flora-derived bacterial antigen complexes in splenic macrophages of rats. J. Histochem. Cytochem.42, 1435–1441 (1994). ArticleCASPubMed Google Scholar
Krueger, J. M. et al. Peptidoglycans as promoters of slow-wave sleep. II. Somnogenic and pyrogenic activities of some naturally occurring muramyl peptides; correlations with mass spectrometric structure determination. J. Biol. Chem.259, 12659–12662 (1984). CASPubMed Google Scholar
Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med.12, 1365–1371 (2006). ArticleCASPubMed Google Scholar
Haas, A. et al. Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection. Gut60, 1506–1519 (2011). ArticleCASPubMed Google Scholar
Chung, J. B., Silverman, M. & Monroe, J. G. Transitional B cells: step by step towards immune competence. Trends Immunol.24, 343–349 (2003). ArticleCASPubMed Google Scholar
Mackay, F. & Schneider, P. Cracking the BAFF code. Nature Rev. Immunol.9, 491–502 (2009). ArticleCAS Google Scholar
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity12, 39–49 (2000). ArticleCASPubMed Google Scholar
Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity14, 603–615 (2001). ArticleCASPubMed Google Scholar
Wen, L. et al. Evidence of marginal-zone B cell- positive selection in spleen. Immunity23, 297–308 (2005). ArticleCASPubMed Google Scholar
Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol.3, 443–450 (2002). ArticleCAS Google Scholar
Hampel, F. et al. CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood118, 6321–6331 (2011). References 54–58 show that signals from the BCR and NOTCH2 are important for the development of MZ B cells. ArticleCASPubMed Google Scholar
Scheeren, F. A. et al. T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J. Exp. Med.205, 2033–2042 (2008). This works show that human MZ B cells develop during fetal life and undergo SHM through an antigen-independent process that does not require T cells. ArticleCASPubMedPubMed Central Google Scholar
Capolunghi, F. et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J. Immunol.180, 800–808 (2008). ArticleCASPubMed Google Scholar
Isnardi, I. et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity29, 746–757 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunol.5, 713–720 (2004). ArticleCAS Google Scholar
Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W. Jr & Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunol.9, 54–62 (2008). ArticleCAS Google Scholar
Lu, T. T. & Cyster, J. G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science297, 409–412 (2002). References 63–65 elucidate the mechanisms by which MZ B cells localize in the splenic MZ and transport antigens to the follicle. ArticleCASPubMed Google Scholar
Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature412, 826–831 (2001). ArticleCASPubMed Google Scholar
Croker, B. A. et al. The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. J. Immunol.168, 3376–3386 (2002). ArticleCASPubMed Google Scholar
Rubtsov, A. et al. Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity23, 527–538 (2005). ArticleCASPubMed Google Scholar
Karlsson, M. C. et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med.198, 333–340 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science271, 348–350 (1996). ArticleCASPubMed Google Scholar
Test, S. T., Mitsuyoshi, J., Connolly, C. C. & Lucas, A. H. Increased immunogenicity and induction of class switching by conjugation of complement C3d to pneumococcal serotype 14 capsular polysaccharide. Infect. Immun.69, 3031–3040 (2001). ArticleCASPubMedPubMed Central Google Scholar
Song, H. & Cerny, J. Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med.198, 1923–1935 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chappell, C. P., Draves, K. E., Giltiay, N. V. & Clark, E. A. Extrafollicular B cell activation by marginal zone dendritic cells drives T cell-dependent antibody responses. J. Exp. Med.209, 1825–1840 (2012). References 72 and 73 demonstrate that MZ B cells respond to protein antigens by following follicular or extrafollicular TD pathways. ArticleCASPubMedPubMed Central Google Scholar
Weller, S. et al. CD40–CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl Acad. Sci. USA98, 1166–1170 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J. Exp. Med.205, 1331–1342 (2008). References 74 and 75 provide evidence that human MZ B cells undergo somatic diversification via a CD40-independent pathway that may not require antigens. ArticleCASPubMedPubMed Central Google Scholar
Genestier, L. et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol.178, 7779–7786 (2007). ArticleCASPubMed Google Scholar
Rubtsov, A. V. et al. TLR agonists promote marginal zone B cell activation and facilitate T-dependent IgM responses. J. Immunol.180, 3882–3888 (2008). ArticleCASPubMed Google Scholar
Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nature Rev. Immunol.12, 282–294 (2012). ArticleCAS Google Scholar
Belperron, A. A., Dailey, C. M. & Bockenstedt, L. K. Infection-induced marginal zone B cell production of _Borrelia hermsii_-specific antibody is impaired in the absence of CD1d. J. Immunol.174, 5681–5686 (2005). ArticleCASPubMed Google Scholar
Haas, K. M., Poe, J. C. & Tedder, T. F. CD21/35 promotes protective immunity to Streptococcus pneumoniae through a complement-independent but CD19-dependent pathway that regulates PD-1 expression. J. Immunol.183, 3661–3671 (2009). ArticleCASPubMed Google Scholar
Garcia de Vinuesa, C., O'Leary, P., Sze, D. M., Toellner, K. M. & MacLennan, I. C. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur. J. Immunol.29, 1314–1323 (1999). ArticleCASPubMed Google Scholar
Timens, W., Boes, A. & Poppema, S. Human marginal zone B cells are not an activated B cell subset: strong expression of CD21 as a putative mediator for rapid B cell activation. Eur. J. Immunol.19, 2163–2166 (1989). ArticleCASPubMed Google Scholar
Tangye, S. G., Liu, Y. J., Aversa, G., Phillips, J. H. & de Vries, J. E. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med.188, 1691–1703 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med.182, 559–566 (1995). ArticleCASPubMed Google Scholar
Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med.188, 1679–1689 (1998). ArticleCASPubMedPubMed Central Google Scholar
Seifert, M. & Kuppers, R. Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J. Exp. Med.206, 2659–2669 (2009). This work provides molecular evidence that human MZ B cells originate in a germinal centre reaction and may therefore be considered to bebona fideIgM+ memory B cells. ArticleCASPubMedPubMed Central Google Scholar
Tangye, S. G. & Good, K. L. Human IgM+CD27+ B cells: memory B cells or “memory” B cells? J. Immunol.179, 13–19 (2007). ArticleCASPubMed Google Scholar
Kuraoka, M. et al. Activation-induced cytidine deaminase expression and activity in the absence of germinal centers: insights into hyper-IgM syndrome. J. Immunol.183, 3237–3248 (2009). ArticleCASPubMed Google Scholar
Roll, P., Palanichamy, A., Kneitz, C., Dorner, T. & Tony, H. P. Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum.54, 2377–2386 (2006). ArticleCASPubMed Google Scholar
Carey, J. B., Moffatt-Blue, C. S., Watson, L. C., Gavin, A. L. & Feeney, A. J. Repertoire-based selection into the marginal zone compartment during B cell development. J. Exp.Med.205, 2043–2052 (2008). ArticleCASPubMedPubMed Central Google Scholar
Swanson, C. L. et al. Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med.207, 1485–1500 (2010). ArticleCASPubMedPubMed Central Google Scholar
Do, R. K. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med.192, 953–964 (2000). ArticleCASPubMedPubMed Central Google Scholar
Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol.27, 2366–2374 (1997). ArticleCASPubMed Google Scholar
Mond, J. J., Lees, A. & Snapper, C. M. T cell-independent antigens type 2. Annu. Rev. Immunol.13, 655–692 (1995). ArticleCASPubMed Google Scholar
Garcia De Vinuesa, C. et al. Dendritic cells associated with plasmablast survival. Eur. J. Immunol.29, 3712–3721 (1999). Together with references 14 and 81, this work demonstrates that DCs enhance antibody responses to TI antigens by supporting the survival of extrafollicular plasmablasts derived from MZ B cells. ArticleCASPubMed Google Scholar
Litinskiy, M. B. et al. Antigen presenting cells induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol.3, 822–829 (2002). ArticleCAS Google Scholar
Pack, M. et al. DEC-205/CD205+ dendritic cells are abundant in the white pulp of the human spleen, including the border region between the red and white pulp. Immunology123, 438–446 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ogembo, J. G. et al. SIRPα/CD172a and FHOD1 are unique markers of littoral cells, a recently evolved major cell population of red pulp of human spleen. J. Immunol.188, 4496–4505 (2012). ArticleCASPubMed Google Scholar
Cols, M. et al. Stromal endothelial cells establish a bidirectional crosstalk with chronic lymphocytic leukemia cells through the TNF-related factors BAFF, APRIL, and CD40L. J. Immunol.188, 6071–6083 (2012). ArticleCASPubMed Google Scholar
Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nature Immunol.8, 294–303 (2007). ArticleCAS Google Scholar
He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol.173, 4479–4491 (2004). References 96 and 99–101 show that BAFF and APRIL are produced by several innate cell types and induce CD40-independent class switching. ArticleCASPubMed Google Scholar
Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med.204, 1959–1971 (2007). This study provides an elegant demonstration that BAFF promotes antibody production through a mechanism involving the TLR-associated protein MYD88. ArticleCASPubMedPubMed Central Google Scholar
Castigli, E. et al. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J. Allergy Clin. Immunol.120, 885–891 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brodeur, S. R. et al. C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Immunity18, 837–848 (2003). ArticleCASPubMed Google Scholar
Li, S. et al. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells. Blood110, 3926–3935 (2007). ArticleCASPubMed Google Scholar
Leadbetter, E. A. et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl Acad. Sci. USA105, 8339–8344 (2008). ArticleCASPubMedPubMed Central Google Scholar
Snapper, C. M. Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria. Ann. NY Acad. Sci.1253, 92–101 (2012). ArticleCASPubMed Google Scholar
Cunningham, A. F. et al. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J. Immunol.178, 6200–6207 (2007). ArticleCASPubMed Google Scholar
Cobb, B. A., Wang, Q., Tzianabos, A. O. & Kasper, D. L. Polysaccharide processing and presentation by the MHCII pathway. Cell117, 677–687 (2004). ArticleCASPubMedPubMed Central Google Scholar
Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol.162, 7198–7207 (1999). CASPubMed Google Scholar
Attanavanich, K. & Kearney, J. F. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol.172, 803–811 (2004). ArticleCASPubMed Google Scholar
Idoyaga, J., Suda, N., Suda, K., Park, C. G. & Steinman, R. M. Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl Acad. Sci. USA106, 1524–1529 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity31, 158–169 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bentebibel, S. E., Schmitt, N., Banchereau, J. & Ueno, H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc. Natl Acad. Sci. USA108, E488–E497 (2011). ArticleCASPubMedPubMed Central Google Scholar
Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA105, 8345–8350 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bialecki, E. et al. Role of marginal zone B lymphocytes in invariant NKT cell activation. J. Immunol.182, 6105–6113 (2009). Together with reference 106, references 116 and 117 indicate that MZ B cells undergo antibody production after interacting with iNKT cells. ArticleCASPubMed Google Scholar
De Santo, C. et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nature Immunol.11, 1039–1046 (2010). ArticleCAS Google Scholar
Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med.194, 45–56 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ellyard, J. I., Avery, D. T., Mackay, C. R. & Tangye, S. G. Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur. J. Immunol.35, 699–708 (2005). ArticleCASPubMed Google Scholar
Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest.112, 286–297 (2003). ArticleCASPubMedPubMed Central Google Scholar
He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity26, 812–826 (2007). ArticleCASPubMed Google Scholar
Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity19, 225–234 (2003). ArticleCASPubMed Google Scholar
Xu, W. et al. Macrophages induce differentiation of plasma cells through CXCL10/IP-10. J. Exp. Med.209, 1813–1823 (2012). References 124 and 125 describe novel plasma cell differentiation pathways that involve an interplay between IL-6, type I IFNs and CXCL10. ArticleCASPubMedPubMed Central Google Scholar
Hendricks, J. et al. Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations. Mol. Immunol.48, 874–882 (2011). ArticleCASPubMed Google Scholar
Crepaldi, L. et al. Up-regulation of IL-10R1 expression is required to render human neutrophils fully responsive to IL-10. J. Immunol.167, 2312–2322 (2001). ArticleCASPubMed Google Scholar
Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science335, 597–601 (2012). This work demonstrates that a unique subset of innate B cells generates protection against sepsis by producing the pleiotropic cytokine GM-CSF. ArticleCASPubMedPubMed Central Google Scholar
Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nature Immunol.12, 151–159 (2011). ArticleCAS Google Scholar
Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science298, 2199–2202 (2002). This work suggests that the long-lived survival of antibody-producing MZ and memory B cells is highly dependent on innate microbial signals. ArticleCASPubMed Google Scholar
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med.3, 73ra19 (2011). ArticlePubMedPubMed Central Google Scholar
He, B. et al. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J. Immunol.176, 3931–3941 (2006). ArticleCASPubMed Google Scholar
Kaminski, D. A. & Stavnezer, J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J. Immunol.177, 6025–6029 (2006). ArticleCASPubMed Google Scholar
Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14, 461–470 (2001). ArticleCASPubMed Google Scholar
Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nature Immunol.11, 303–312 (2010). ArticleCAS Google Scholar
Tarkowski, A. et al. Immunization of humans with polysaccharide vaccines induces systemic, predominantly polymeric IgA2-subclass antibody responses. J. Immunol.144, 3770–3778 (1990). CASPubMed Google Scholar
Carson, P. J., Schut, R. L., Simpson, M. L., O'Brien, J. & Janoff, E. N. Antibody class and subclass responses to pneumococcal polysaccharides following immunization of human immunodeficiency virus-infected patients. J. Infect. Dis.172, 340–345 (1995). References 122, 138 and 139 suggest that human IgG2 and IgA2 antibodies can be produced through TI pathways. ArticleCASPubMed Google Scholar
Dammers, P. M., de Boer, N. K., Deenen, G. J., Nieuwenhuis, P. & Kroese, F. G. The origin of marginal zone B cells in the rat. Eur. J. Immunol.29, 1522–1531 (1999). ArticleCASPubMed Google Scholar
Toellner, K. M. et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med.195, 383–389 (2002). ArticleCASPubMedPubMed Central Google Scholar
Herlands, R. A., Christensen, S. R., Sweet, R. A., Hershberg, U. & Shlomchik, M. J. T cell-independent and Toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity29, 249–260 (2008). References 141 and 142 show that B cells can undergo SHM in a TI manner. ArticleCASPubMedPubMed Central Google Scholar
Lanning, D. K., Rhee, K. J. & Knight, K. L. Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol.26, 419–425 (2005). ArticleCASPubMed Google Scholar
Mao, C. et al. T cell-independent somatic hypermutation in murine B cells with an immature phenotype. Immunity20, 133–144 (2004). ArticleCASPubMed Google Scholar
Aranburu, A. et al. TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells. J. Immunol.185, 7293–7301 (2010). References 144 and 145 provide additional evidence that some B cells activate the SHM machinery in response to innate signals without requiring T cells. ArticleCASPubMed Google Scholar
van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nature Rev. Immunol.10, 664–674 (2010). ArticleCAS Google Scholar
Zindl, C. L. et al. The lymphotoxin LTα1β2 controls postnatal and adult spleen marginal sinus vascular structure and function. Immunity30, 408–420 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Rev. Immunol.9, 618–629 (2009). ArticleCAS Google Scholar
Schneider, K. et al. Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe3, 67–76 (2008). ArticleCASPubMedPubMed Central Google Scholar