25-Hydroxycholesterols in innate and adaptive immunity (original) (raw)
Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nature Rev. Mol. Cell. Biol.9, 125–138 (2008). ArticleCAS Google Scholar
Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nature Rev. Mol. Cell. Biol.11, 688–699 (2010). ArticleCAS Google Scholar
Chukkapalli, V., Heaton, N. S. & Randall, G. Lipids at the interface of virus-host interactions. Curr. Opin. Microbiol.15, 512–518 (2012). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell124, 35–46 (2006). This is a concise review on the pioneering work that defined the molecular mechanism of cholesterol-mediated and 25-HC-mediated feedback regulation of the sterol biosynthetic pathway. ArticleCASPubMed Google Scholar
Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem.72, 137–174 (2003). This authoritative review describes the enzyme requirements for the synthesis of bile acids and oxysterols in the liver and other tissues. ArticleCASPubMed Google Scholar
Brown, M. S. & Goldstein, J. L. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J. Biol. Chem.249, 7306–7314 (1974). ArticleCASPubMed Google Scholar
Kandutsch, A. A. & Chen, H. W. Inhibition of sterol synthesis in cultured mouse cells by cholesterol derivatives oxygenated in the side chain. J. Biol. Chem.249, 6057–6061 (1974). ArticleCASPubMed Google Scholar
Diczfalusy, U. On the formation and possible biological role of 25-hydroxycholesterol. Biochimie95, 455–460 (2013). ArticleCASPubMed Google Scholar
Diczfalusy, U. et al. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J. Lipid Res.50, 2258–2264 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bauman, D. R. et al. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc. Natl Acad. Sci. USA106, 16764–16769 (2009). This paper is an early demonstration that 25-HC can affect the adaptive immune system with the discovery of increased IgA levels in CH25H-deficient mice and decreased IgA levels in CYP7B1-deficient mice. ArticleCASPubMedPubMed Central Google Scholar
Park, K. & Scott, A. L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol.88, 1081–1087 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zou, T., Garifulin, O., Berland, R. & Boyartchuk, V. L. Listeria monocytogenes infection induces prosurvival metabolic signaling in macrophages. Infect. Immun.79, 1526–1535 (2011). This study shows thatL. monocytogenesinfection and type I IFN treatment of macrophages upregulateCh25hand this leads to the repression of caspase 1 activation. ArticleCASPubMedPubMed Central Google Scholar
Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity38, 106–118 (2013). This study shows that 25-HC is strongly induced following viral infection and by IFN, and has a broad ability to antagonize the replication of enveloped virusesin vitro. ArticleCASPubMedPubMed Central Google Scholar
Liu, S. Y. et al. Interferon-inducible cholesterol-25- hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity38, 92–105 (2013). This study is complementary to reference 16 and shows that CH25H and 25-HC inhibit the replication of a wide range of enveloped virusesin vitro, as well as demonstrating thein vivoeffects of 25-HC and CH25H deficiency on viral replication. ArticlePubMedCAS Google Scholar
Gatto, D., Paus, D., Basten, A., Mackay, C. R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity31, 259–269 (2009). ArticleCASPubMed Google Scholar
Pereira, J. P., Kelly, L. M., Xu, Y. & Cyster, J. G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature460, 1122–1126 (2009). References 18 and 19 show, using independently generated EBI2-deficient mice, anin vivofunction for EBI2 in guiding immune cell migration. ArticleCASPubMedPubMed Central Google Scholar
Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature475, 519–523 (2011). References 20 and 21 both use classical biochemical methods to de-orphanize EBI2 and identify 7α,25-HC as the most potent ligand. ArticleCASPubMed Google Scholar
Gold, E. S. et al. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J. Exp. Med.209, 807–817 (2012). This study shows thatCh25his a major target gene repressed by ATF3 and that increased levels of 25-HC in the absence of ATF3 are associated with macrophage foam cell formation. ArticleCASPubMedPubMed Central Google Scholar
Gold, E. S. et al. 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc. Natl Acad. Sci. USA111, 10666–10671 (2014). This study shows that 25-HC can augment the expression of some inflammatory genes in macrophages and correlates these findings with reduced inflammation-mediated pathology following influenza virus infection in CH25H-deficient mice. ArticleCASPubMedPubMed Central Google Scholar
Koarai, A. et al. 25-Hydroxycholesterol enhances cytokine release and Toll-like receptor 3 response in airway epithelial cells. Respir. Res.13, 63 (2012). ArticleCASPubMedPubMed Central Google Scholar
Reboldi, A. et al. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science345, 679–684 (2014). This study shows that CH25H deficiency leads to the increased production of IL-1 family cytokines following inflammatory insultsin vivo, and demonstrates that 25-HC repressesIl1bexpression and inflammasome activation in activated macrophages. ArticleCASPubMedPubMed Central Google Scholar
Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nature Immunol.14, 446–453 (2013). ArticleCAS Google Scholar
Yi, T. & Cyster, J. G. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. Elife2, e00757 (2013). References 26 and 27 establish that CD4+ DCs in the spleen require EBI2 and 7α,25-HC for positioning in marginal zone bridging channels, and show that this positioning is important for maintaining their homeostasis and for mounting T cell-dependent antibody responses against certain blood-borne antigens. ArticlePubMedPubMed CentralCAS Google Scholar
Lund, E. G., Kerr, T. A., Sakai, J., Li, W. P. & Russell, D. W. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J. Biol. Chem.273, 34316–34327 (1998). ArticleCASPubMed Google Scholar
Stiles, A. R., McDonald, J. G., Bauman, D. R. & Russell, D. W. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J. Biol. Chem.284, 28485–28489 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schwarz, M. et al. The bile acid synthetic gene 3β-hydroxy-δ5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J. Clin. Invest.106, 1175–1184 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yi, T. et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity37, 535–548 (2012). This study demonstrates that CH25H and CYP7B1 are abundant in interfollicular stromal cells and low in the central region of follicles. It also shows that HSD3B7 is needed to inactivate 7α,25-HC as an EBI2 ligand and thereby establish 7α,25-HC 'gradients' that guide cell movement. ArticleCASPubMedPubMed Central Google Scholar
Spann, N. J. & Glass, C. K. Sterols and oxysterols in immune cell function. Nature Immunol.14, 893–900 (2013). ArticleCAS Google Scholar
Sever, N., Yang, T., Brown, M. S., Goldstein, J. L. & DeBose-Boyd, R. A. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell11, 25–33 (2003). ArticleCASPubMed Google Scholar
Mackenzie, J. M., Khromykh, A. A. & Parton, R. G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe2, 229–239 (2007). ArticleCASPubMed Google Scholar
Rothwell, C. et al. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology389, 8–19 (2009). ArticleCASPubMed Google Scholar
Robinzon, S. et al. Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. J. Virol.83, 5495–5504 (2009). ArticleCASPubMedPubMed Central Google Scholar
Petersen, J. et al. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog.10, e1003911 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lu, Y. E., Cassese, T. & Kielian, M. The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol.73, 4272–4278 (1999). ArticleCASPubMedPubMed Central Google Scholar
Daya, M., Cervin, M. & Anderson, R. Cholesterol enhances mouse hepatitis virus-mediated cell fusion. Virology163, 276–283 (1988). ArticleCASPubMed Google Scholar
Phalen, T. & Kielian, M. Cholesterol is required for infection by Semliki Forest virus. J. Cell Biol.112, 615–623 (1991). ArticleCASPubMed Google Scholar
Blanc, M. et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol.9, e1000598 (2011). This study demonstrates that several viral infections and type I IFNs repress SREBP2 cleavage and sterol biosynthesis in macrophages and fibroblasts. ArticleCASPubMedPubMed Central Google Scholar
Shibata, N. et al. 25-Hydroxycholesterol activates the integrated stress response to reprogram transcription and translation in macrophages. J. Biol. Chem.288, 35812–35823 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA109, 4239–4244 (2012). This study identifies CH25H as a major ISG that has antiviral activity. ArticleCASPubMedPubMed Central Google Scholar
Moog, C., Aubertin, A. M., Kirn, A. & Luu, B. Oxysterols, but not cholesterol, inhibit human immunodeficiency virus replication in vitro. Antivir. Chem. Chemother.9, 491–496 (1998). ArticleCASPubMed Google Scholar
Su, A. I. et al. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl Acad. Sci. USA99, 15669–15674 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gale, S. E. et al. Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions. J. Biol. Chem.284, 1755–1764 (2009). ArticleCASPubMedPubMed Central Google Scholar
Olsen, B. N., Schlesinger, P. H., Ory, D. S. & Baker, N. A. 25-Hydroxycholesterol increases the availability of cholesterol in phospholipid membranes. Biophys. J.100, 948–956 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol.22, 129–157 (2006). ArticleCASPubMed Google Scholar
Arita, M. Phosphatidylinositol-4 kinase III β and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol. Immunol.58, 239–256 (2014). ArticleCASPubMed Google Scholar
Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell155, 830–843 (2013). ArticleCASPubMed Google Scholar
Amini- Bavil-Olyaee, S. et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe13, 452–464 (2013). ArticleCAS Google Scholar
Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nature Rev. Immunol.12, 125–135 (2012). ArticleCAS Google Scholar
Ludigs, K., Parfenov, V., Du Pasquier, R. A. & Guarda, G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell. Mol. Life Sci.69, 3395–3418 (2012). ArticleCASPubMed Google Scholar
Inoue, M. & Shinohara, M. L. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis — in the perspective of inflammasomes. Immunology139, 11–18 (2013). ArticleCASPubMedPubMed Central Google Scholar
Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity34, 213–223 (2011). This is an elegant study demonstrating that type I IFN suppresses inflammasome activation by an undefined mechanism. ArticleCASPubMed Google Scholar
Franchi, L., Munoz-Planillo, R. & Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nature Immunol.13, 325–332 (2012). ArticleCAS Google Scholar
Kuijk, L. M. et al. HMG-CoA reductase inhibition induces IL-1β release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood112, 3563–3573 (2008). ArticleCASPubMed Google Scholar
Liao, Y. H. et al. HMG-CoA reductase inhibitors activate caspase-1 in human monocytes depending on ATP release and P2X7 activation. J. Leukoc. Biol.93, 289–299 (2013). ArticleCASPubMed Google Scholar
Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature511, 99–103 (2014). ArticleCASPubMedPubMed Central Google Scholar
Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature466, 973–977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu. Rev. Immunol.27, 621–668 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mandey, S. H., Kuijk, L. M., Frenkel, J. & Waterham, H. R. A role for geranylgeranylation in interleukin-1β secretion. Arthritis Rheum.54, 3690–3695 (2006). ArticleCASPubMed Google Scholar
Pontillo, A., Paoluzzi, E. & Crovella, S. The inhibition of mevalonate pathway induces upregulation of NALP3 expression: new insight in the pathogenesis of mevalonate kinase deficiency. Eur. J. Hum. Genet.18, 844–847 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. et al. Sufficient production of geranylgeraniol is required to maintain endotoxin tolerance in macrophages. J. Lipid Res.54, 3430–3437 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gibson, K. M. et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured fibroblasts from patients with mevalonate kinase deficiency: differential response to lipid supplied by fetal bovine serum in tissue culture medium. J. Lipid Res.31, 515–521 (1990). ArticleCASPubMed Google Scholar
Umetani, M. et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell. Metab.20, 172–182 (2014). ArticleCASPubMedPubMed Central Google Scholar
Umetani, M. et al. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nature Med.13, 1185–1192 (2007). ArticleCASPubMed Google Scholar
Lundberg, B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis56, 93–110 (1985). ArticleCASPubMed Google Scholar
Brown, M. S., Dana, S. E. & Goldstein, J. L. Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J. Biol. Chem.250, 4025–4027 (1975). ArticleCASPubMed Google Scholar
Miller, S. C. & Melnykovych, G. Regulation of cholesterol biosynthesis and esterification by 25-hydroxycholesterol in a macrophage-like cell line: uncoupling by progesterone. J. Lipid Res.25, 991–999 (1984). ArticleCASPubMed Google Scholar
Cheng, D., Chang, C. C., Qu, X. & Chang, T. Y. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J. Biol. Chem.270, 685–695 (1995). ArticleCASPubMed Google Scholar
Li-Hawkins, J., Lund, E. G., Turley, S. D. & Russell, D. W. Disruption of the oxysterol 7α-hydroxylase gene in mice. J. Biol. Chem.275, 16536–16542 (2000). ArticleCASPubMed Google Scholar
Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature441, 173–178 (2006). ArticleCASPubMed Google Scholar
Birkenbach, M., Josefsen, K., Yalmanchili, R., Lenoir, G. & Kieff, E. Epstein-Barr virus induced genes: first lymphocyte-specific G-protein coupled peptide receptors. J. Virol.67, 2209–2220 (1993). ArticleCASPubMedPubMed Central Google Scholar
Rosenkilde, M. M. et al. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity. J. Biol. Chem.281, 13199–13208 (2006). ArticleCASPubMed Google Scholar
Benned-Jensen, T. et al. Ligand modulation of the Epstein-Barr virus-induced seven-transmembrane receptor EBI2: identification of a potent and efficacious inverse agonist. J. Biol. Chem.286, 29292–29302 (2011). ArticleCASPubMedPubMed Central Google Scholar
Benned-Jensen, T. et al. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation. FEBS Open Bio.3, 156–160 (2013). ArticleCASPubMedPubMed Central Google Scholar
Benned-Jensen, T. & Rosenkilde, M. M. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist. Mol. Pharmacol.74, 1008–1021 (2008). ArticleCASPubMed Google Scholar
Benned-Jensen, T. et al. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J. Biol. Chem.287, 35470–35483 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. et al. Identification of structural motifs critical for Epstein-Barr virus-induced molecule 2 function and homology modeling of the ligand docking site. Mol. Pharmacol.82, 1094–1103 (2012). ArticleCASPubMed Google Scholar
Gessier, F. et al. Identification and characterization of small molecule modulators of the Epstein-Barr virus-induced gene 2 (EBI2) receptor. J. Med. Chem.57, 3358–3368 (2014). ArticleCASPubMed Google Scholar
Gatto, D. & Brink, R. B cell localization: regulation by EBI2 and its oxysterol ligand. Trends Immunol.34, 336–341 (2013). This is an excellent review of EBI2 biology in B cells. ArticleCASPubMed Google Scholar
Kelly, L. M., Pereira, J. P., Yi, T., Xu, Y. & Cyster, J. G. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J. Immunol.187, 3026–3032 (2011). This study establishes the time course of EBI2 influence on B cell behaviourin vivoand uses a sensitive bioassay to show that an EBI2 ligand is widely distributed in tissues. ArticleCASPubMed Google Scholar
Gatto, D., Wood, K. & Brink, R. EBI2 operates independently of but in cooperation with CXCR5 and CCR7 to direct B cell migration and organization in follicles and the germinal center. J. Immunol.187, 4621–4628 (2011). By removing the influence of two major chemokines, this report reveals additional influences of EBI2 in B cell positioning in the spleen. ArticleCASPubMed Google Scholar
Chan, T. D. et al. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J. Immunol.183, 3139–3149 (2009). ArticleCASPubMed Google Scholar
MacLennan, I. & Vinuesa, C. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity17, 235–238 (2002). ArticleCASPubMed Google Scholar
Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Rev. Immunol.9, 618–629 (2009). ArticleCAS Google Scholar
Coffey, F., Alabyev, B. & Manser, T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity30, 599–609 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cyster, J. G. B cell follicles and antigen encounters of the third kind. Nature Immunol.11, 989–996 (2010). ArticleCAS Google Scholar
Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity13, 199–212 (2000). ArticleCASPubMed Google Scholar
Turqueti-Neves, A. et al. B-cell-intrinsic STAT6 signaling controls germinal center formation. Eur. J. Immunol.44, 2130–2138 (2014). ArticleCASPubMed Google Scholar
Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity41, 152–165 (2014). ArticleCASPubMed Google Scholar
Coelho, F. M. et al. Naive B-cell trafficking is shaped by local chemokine availability and LFA-1-independent stromal interactions. Blood121, 4101–4109 (2013). ArticleCASPubMed Google Scholar
Barroso, R. et al. EBI2 regulates CXCL13-mediated responses by heterodimerization with CXCR5. FASEB J.26, 4841–4854 (2012). ArticleCASPubMed Google Scholar
Lund, R., Aittokallio, T., Nevalainen, O. & Lahesmaa, R. Identification of novel genes regulated by IL-12, IL-4, or TGF-β during the early polarization of CD4+ lymphocytes. J. Immunol.171, 5328–5336 (2003). ArticleCASPubMed Google Scholar
Kroenke, M. A. et al. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. J. Immunol.188, 3734–3744 (2012). ArticleCASPubMed Google Scholar
Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity22, 439–450 (2005). ArticleCASPubMed Google Scholar
Heinig, M. et al. A _trans_-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature467, 460–464 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wallace, C. et al. Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum. Mol. Genet.21, 2815–2824 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature491, 119–124 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chiang, E. Y., Johnston, R. J. & Grogan, J. EBI2 is a negative regulator of type I interferons in plasmacytoid and myeloid dendritic cells. PLoS ONE8, e83457 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Preuss, I. et al. Transcriptional regulation and functional characterization of the oxysterol/EBI2 system in primary human macrophages. Biochem. Biophys. Res. Commun.446, 663–668 (2014). ArticleCASPubMed Google Scholar
Cantor, R. M. et al. Systemic lupus erythematosus genome scan: support for linkage at 1q23, 2q33, 16q12–13, and 17q21–23 and novel evidence at 3p24, 10q23–24, 13q32, and 18q22–23. Arthritis Rheumatism50, 3203–3210 (2004). ArticleCASPubMed Google Scholar
Moser, K. L. et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc. Natl Acad. Sci. USA95, 14869–14874 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ye, S. et al. Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT1. Rheumatology42, 1155–1163 (2003). ArticleCASPubMed Google Scholar
Wilson, L. E., Widman, D., Dikman, S. H. & Gorevic, P. D. Autoimmune disease complicating antiviral therapy for hepatitis C virus infection. Semin. Arthritis Rheum.32, 163–173 (2002). ArticlePubMed Google Scholar
Niedobitek, G. et al. Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood79, 2520–2526 (1992). ArticleCASPubMed Google Scholar
Kurth, J. et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity13, 485–495 (2000). ArticleCASPubMed Google Scholar
Hanlon, P., Avenell, A., Aucott, L. & Vickers, M. A. Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res. Ther.16, R3 (2014). ArticlePubMedPubMed Central Google Scholar
Lin, C. Y. & Morel, D. W. Esterification of oxysterols in human serum: effects on distribution and cellular uptake. J. Lipid Res.37, 168–178 (1996). ArticleCASPubMed Google Scholar
Frederico, B., Chao, B., May, J. S., Belz, G. T. & Stevenson, P. G. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe15, 457–470 (2014). ArticleCASPubMed Google Scholar
Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature383, 728–731 (1996). ArticleCASPubMed Google Scholar
Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature454, 470–477 (2008). ArticleCASPubMed Google Scholar
Jin, L. et al. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORγ. Mol. Endocrinol.24, 923–929 (2010). ArticleCASPubMedPubMed Central Google Scholar
Soroosh, P. et al. Oxysterols are agonist ligands of RORγt and drive Th1 cell differentiation. Proc. Natl Acad. Sci. USA111, 12163–12168 (2014). ArticleCASPubMedPubMed Central Google Scholar
Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature472, 486–490 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature Immunol.14, 489–499 (2013). ArticleCAS Google Scholar