- van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).
Article CAS Google Scholar
- Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).
Article CAS PubMed Google Scholar
- Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).
Article CAS PubMed Google Scholar
- Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).
Article CAS Google Scholar
- Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol. 8, 185–194 (2007).
Article CAS Google Scholar
- Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).
Article CAS PubMed Google Scholar
- Shaw, A. S. Lipid rafts: now you see them, now you don't. Nature Immunol. 7, 1139–1142 (2006).
Article CAS Google Scholar
- Lichtenberg, D., Goñi, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).
Article CAS PubMed Google Scholar
- Lingwood, D. & Simons, K. Detergent resistance as a tool in membrane research. Nature Protoc. 2, 2159–2165 (2007).
Article CAS Google Scholar
- Kenworthy, A. K. Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9, 531–535 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Kalvodova, L. et al. The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J. Virol. 83, 7996–8003 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32, 3082–3091 (2002).
Article CAS PubMed Google Scholar
- Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Glebov, O. O. & Nichols, B. J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biol. 6, 238–243 (2004).
Article CAS PubMed Google Scholar
- He, H. & Marguet, D. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9, 525–530 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Jacobson, K., Mouritsen, O. G. & Anderson, R. G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007).
Article CAS PubMed Google Scholar
- Day, C. A. & Kenworthy, A. K. Tracking microdomain dynamics in cell membranes. Biochim. Biophys. Acta 1788, 245–253 (2009).
Article CAS PubMed Google Scholar
- Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336 (2005).
Article CAS PubMed Google Scholar
- Meyer, B. H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl Acad. Sci. USA 103, 2138–2143 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004). The first demonstration of cholesterol-assisted nanoscale clusters in living cells.
Article CAS PubMed Google Scholar
- Vyas, N. et al. Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133, 1214–1227 (2008).
Article CAS PubMed Google Scholar
- Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).
Article CAS PubMed Google Scholar
- Pinaud, F. et al. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10, 691–712 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Lenne, P. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175.
- Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
Article CAS PubMed Google Scholar
- Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Meth. 5, 417–423 (2008).
Article CAS Google Scholar
- Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Meth. 3, 793–795 (2006).
Article CAS Google Scholar
- Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009). A super-resolution microscopy study showing that sphingolipids and GPI-anchored proteins are transiently trapped in cholesterol-dependent molecular complexes in live cells.
Article CAS PubMed Google Scholar
- van Zanten, T. S., Cambi, A. & Garcia-Parajo, M. F. A nanometer scale optical view on the compartmentalization of cell membranes. Biochim. Biophys. Acta 1798, 777–787 (2010).
Article CAS PubMed Google Scholar
- Zhong, L. et al. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS ONE 4, e5945 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Lasserre, R. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature Chem. Biol. 4, 538–547 (2008).
Article CAS Google Scholar
- Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007).
Article CAS PubMed Google Scholar
- Sahl, S. J., Leutenegger, M., Hilbert, M., Hell, S. W. & Eggeling, C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc. Natl Acad. Sci. USA 107, 6829–6834 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Shevchenko, A. & Simons, K. Lipidomics: coming to grips with lipid diversity. Nature Rev. Mol. Cell Biol. 11, 593–598 (2010).
Article CAS Google Scholar
- Dennis, E. A. Lipidomics joins the omics evolution. Proc. Natl Acad. Sci. USA 106, 2089–2090 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Zech, T. et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466–476 (2009). The first lipidomic analysis of raft clusters in activated TCR domains.
Article CAS PubMed PubMed Central Google Scholar
- Klemm, R. W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the _trans_-Golgi network. J. Cell Biol. 185, 601–612 (2009). The first direct experimental support for a post-Golgi raft pathway that transports proteins towards the plasma membrane.
Article CAS PubMed PubMed Central Google Scholar
- Brugger, B. et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA 103, 2641–2646 (2006).
Article PubMed PubMed Central CAS Google Scholar
- Feigenson, G. W. Phase behavior of lipid mixtures. Nature Chem. Biol. 2, 560–563 (2006).
Article CAS Google Scholar
- Jorgensen, K. & Mouritsen, O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 69, 942–954 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Kahya, N. & Schwille, P. Fluorescence correlation studies of lipid domains in model membranes. Mol. Membr. Biol. 23, 29–39 (2006).
Article CAS PubMed Google Scholar
- Johnston, L. J. Nanoscale imaging of domains in supported lipid membranes. Langmuir 23, 5886–5895 (2007).
Article CAS PubMed Google Scholar
- Elson, E. L., Fried, E., Dolbow, J. E. & Genin, G. M. Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Hammond, A. T. et al. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA 102, 6320–6325 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Collins, M. D. & Keller, S. L. Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl Acad. Sci. USA 105, 124–128 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).
Article CAS PubMed Google Scholar
- Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007). Shows the presence of liquid-ordered-like and liquid-disordered-like phases in plasma membrane vesicles containing native lipids and proteins.
Article CAS PubMed PubMed Central Google Scholar
- Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).
Article CAS PubMed Google Scholar
- Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008). Shows that inflated plasma membranes can separate into large-scale domains at 37°C following cholera toxin cross-linking.
Article CAS PubMed PubMed Central Google Scholar
- Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).
Article CAS PubMed Google Scholar
- Kholodenko, B. N., Hancock, J. F. & Kolch, W. Signalling ballet in space and time. Nature Rev. Mol. Cell Biol. 11, 414–426 (2010).
Article CAS Google Scholar
- Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).
Article CAS Google Scholar
- Stefanová, I., Horejsí, V., Ansotegui, I. J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).
Article PubMed Google Scholar
- Seminario, M. C. & Bunnell, S. C. Signal initiation in T-cell receptor microclusters. Immunol. Rev. 221, 90–106 (2008).
Article CAS PubMed Google Scholar
- Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kaizuka, Y., Douglass, A. D., Vardhana, S., Dustin, M. L. & Vale, R. D. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J. Cell Biol. 185, 521–534 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Davis, M. et al. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007).
Article CAS PubMed Google Scholar
- Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Huppa, J. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Dunne, P. D. et al. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking. Biophys. J. 97, L5–L7 (2009).
Article PubMed PubMed Central CAS Google Scholar
- James, J. R. et al. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc. Natl Acad. Sci. USA 104, 17662–17667 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Lillemeier, B., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. & Davis, M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl Acad. Sci. USA 103, 18992–18997 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Lillemeier, B. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol. 11, 90–96 (2010).
Article CAS Google Scholar
- van der Merwe, P. A., Dunne, P. D., Klenerman, D. & Davis, S. J. Taking T cells beyond the diffraction limit. Nature Immunol. 11, 51–52 (2010).
Article CAS Google Scholar
- Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).
Article CAS PubMed Google Scholar
- Suzuki, K. G. et al. GPI-anchored receptor clusters transiently recruit Lyn and G α for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007). This paper introduced the STALL concept of GPI-anchored protein signalling, which shows that clusters undergoing STALL generate short-lived, digital-like signalling bursts.
Article CAS PubMed PubMed Central Google Scholar
- Waheed, A. A. & Freed, E. O. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 143, 162–176 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044 (1999).
Article CAS PubMed Google Scholar
- Grassme, H., Riethmuller, J. & Gulbins, E. Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170 (2007).
Article CAS PubMed Google Scholar
- Chan, R. et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82, 11228–11238 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Lorizate, M. et al. Probing HIV-1 membrane liquid order by Laurdan staining reveals producer cell-dependent differences. J. Biol. Chem. 284, 22238–22247 (2009).
Article CAS PubMed PubMed Central Google Scholar
- McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).
Article CAS PubMed Google Scholar
- Tong, J. et al. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers. Biophys. J. 94, 125–133 (2008).
Article CAS PubMed Google Scholar
- Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103, 11364–11369 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Wassall, S. R. & Stillwell, W. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim. Biophys. Acta 1788, 24–32 (2009).
Article CAS PubMed Google Scholar
- Castillon, G. A., Watanabe, R., Taylor, M., Schwabe, T. M. & Riezman, H. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10, 186–200 (2009).
Article CAS PubMed Google Scholar
- Fujita, M., Umemura, M., Yoko, O. T. & Jigami, Y. PER1 Is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell 17, 5253–5264 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Fujita, M., Yoko, O. T. & Jigami, Y. Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 17, 834–850 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Kajiwara, K. et al. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol. Biol. Cell 19, 2069–2082 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Barz, W. P. & Walter, P. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 10, 1043–1059 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H. & Riezman, H. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277, 49538–49544 (2002).
Article CAS PubMed Google Scholar
- Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).
Article CAS PubMed Google Scholar
- Harsay, E. & Bretscher, A. Parallel secretory pathways to the cell surface in yeast. J. Cell Biol. 131, 297–310 (1995).
Article CAS PubMed Google Scholar
- Proszynski, T. J. et al. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc. Natl Acad. Sci. USA 102, 17981–17986 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Ejsing, C. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl Acad. Sci. USA 106, 2136–2141 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).
Article CAS PubMed Google Scholar
- Klose, C. et al. Yeast lipids can phase separate into micrometer-scale membrane domains. J. Biol. Chem. 20 Jul 2010 (doi: 10.1074/jbc.M110.123554).
Article CAS Google Scholar
- Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Ann. Rev. Biochem. 79, 803–833 (2010).
Article CAS PubMed Google Scholar
- Sandvig, K. et al. Pathways followed by protein toxins into cells. Int. J. Med. Microbiol. 293, 483–490 (2004).
Article CAS PubMed Google Scholar
- Ling, H. et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998).
Article CAS PubMed Google Scholar
- Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007). Shows that Shiga toxin can induce a lipid reorganization in plasma membranes that forms energy-independent endocytic tubules in cells.
Article PubMed CAS Google Scholar
- Reynwar, B. J. et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007).
Article CAS PubMed Google Scholar
- Windschiegl, B. et al. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS ONE 4, e6238 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Romer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).
Article CAS PubMed Google Scholar
- Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biol. 12, 11–18 (2010).
Article CAS PubMed Google Scholar
- Bhagatji, P., Leventis, R., Comeau, J., Refaei, M. & Silvius, J. R. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins. J. Cell Biol. 186, 615–628 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169.
- Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Niemelä, P. S. et al. Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 132, 7574–7575 (2010).
Article PubMed CAS Google Scholar
- Devaux, P. F. & Morris, R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5, 241–246 (2004).
Article CAS PubMed Google Scholar
- Chen, Y., Veracini, L., Benistant, C. & Jacobson, K. The transmembrane protein CBP plays a role in transiently anchoring small clusters of Thy-1, a GPI-anchored protein, to the cytoskeleton. J. Cell Sci. 122, 3966–3972 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Suzuki, K. G., Fujiwara, T. K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase C γ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).
Article CAS PubMed Google Scholar
- Andrews, N. L. et al. Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization. Nature Cell Biol. 10, 955–963 (2008).
Article CAS PubMed Google Scholar
- Viola, A. & Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Rev. Immunol. 7, 889–896 (2007).
Article CAS Google Scholar
- Gupta, N. et al. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nature Immunol. 7, 625–633 (2006).
Article CAS Google Scholar
- Meder, D., Moreno, M. J., Verkade, P., Vaz, W. L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl Acad. Sci. USA 103, 329–334 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Danielsen, E. M. & Hansen, G. H. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim. Biophys. Acta 1617, 1–9 (2003).
Article CAS PubMed Google Scholar
- Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).
Article CAS PubMed Google Scholar
- Veatch, S. L., Soubias, O., Keller, S. L. & Gawrisch, K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl Acad. Sci. USA 104, 17650–17655 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Honerkamp-Smith, A. R., Veatch, S. L. & Keller, S. L. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta 1788, 53–63 (2009).
Article CAS PubMed Google Scholar
- Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). The first observation of critical behaviour in plasma membranes, suggesting that nanoscale domains form under physiological conditions.
Article CAS PubMed Google Scholar
- Johnson, S. A. et al. Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochim. Biophys. Acta 1798, 1427–1435 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ejsing, C. S. et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78, 6202–6214 (2006).
Article CAS PubMed Google Scholar
- Ivanchenko, S. et al. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5, e1000652 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Nguyen, D. H. & Hildreth, J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).
Article CAS PubMed PubMed Central Google Scholar