Eicosanoid storm in infection and inflammation (original) (raw)
Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science294, 1871–1875 (2001). CASPubMed Google Scholar
Buczynski, M. W., Dumlao, D. S. & Dennis, E. A. Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res.50, 1015–1038 (2009). A paper that describes and compares the genes and enzymes responsible for the formation of major and minor eicosanoids and related lipid mediators from arachidonic acid and related PUFAs in humans, mice and rats. CASPubMedPubMed Central Google Scholar
Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev.243, 136–151 (2011). CASPubMed Google Scholar
Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol.13, 397–411 (2013). CASPubMed Google Scholar
Norris, P. C., Gosselin, D., Reichart, D., Glass, C. K. & Dennis, E. A. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc. Natl Acad. Sci. USA111, 12746–12751 (2014). A study demonstrating macrophage reprogramming from pro-inflammatory to pro-resolution mediator synthesis that parallels classic inflammasome activation: a link between inflammation and resolution, as well as between eicosanoid and cytokine storms. CASPubMed Google Scholar
Harkewicz, R. & Dennis, E. A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem.80, 301–325 (2011). CASPubMedPubMed Central Google Scholar
Dumlao, D. S., Buczynski, M. W., Norris, P. C., Harkewicz, R. & Dennis, E. A. High-throughput lipidomic analysis of fatty acid derived eicosanoids and _N_-acylethanolamines. Biochim. Biophys. Acta1811, 724–736 (2011). CASPubMedPubMed Central Google Scholar
Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature510, 92–101 (2014). A definitive review of inflammation resolution and the biosynthesis, receptor signalling and biological roles of the lipid mediators involved. CASPubMedPubMed Central Google Scholar
Quehenberger, O. & Dennis, E. A. The human plasma lipidome. New Engl. J. Med.365, 1812–1823 (2011). A comprehensive analysis and survey of the diversity of lipid species in plasma and their roles as participants in and biomarkers for a wide range of human diseases. CASPubMed Google Scholar
Wada, M. et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J. Biol. Chem.282, 22254–22266 (2007). CASPubMed Google Scholar
Nebert, D. W. & Dalton, T. P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer6, 947–960 (2006). CASPubMed Google Scholar
Brash, A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem.274, 23679–23682 (1999). CASPubMed Google Scholar
Sala, A., Folco, G. & Murphy, R. C. Transcellular biosynthesis of eicosanoids. Pharmacol. Rep.62, 503–510 (2010). CASPubMedPubMed Central Google Scholar
Ueno, N., Takegoshi, Y., Kamei, D., Kudo, I. & Murakami, M. Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem. Biophys. Res. Commun.338, 70–76 (2005). CASPubMed Google Scholar
Newcomer, M. E. & Gilbert, N. C. Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J. Biol. Chem.285, 25109–25114 (2010). CASPubMedPubMed Central Google Scholar
Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev.111, 6130–6185 (2011). A complete review of the PLA2 superfamily of enzymes that initiate the release of arachidonic acid for eicosanoid formation, including a discussion of their biological roles and related therapeutic intervention strategies. CASPubMedPubMed Central Google Scholar
Vane, J. R. Biomedicine. Back to an aspirin a day? Science296, 474–475 (2002). CASPubMed Google Scholar
Rajakariar, R., Yaqoob, M. M. & Gilroy, D. W. COX-2 in inflammation and resolution. Mol. Interv.6, 199–207 (2006). CASPubMed Google Scholar
Chen, C. COX-2's new role in inflammation. Nat. Chem. Biol.6, 401–402 (2010). CASPubMed Google Scholar
Norris, P. C. & Dennis, E. A. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc. Natl Acad. Sci. USA109, 8517–8522 (2012). A study that confirms the biochemical mechanism of actions ofω-3 PUFAs on COX1 and COX2 that relate to cardiovascular complications of NSAIDs; a role for PUFA elongation and desaturation is also identified. CASPubMed Google Scholar
Smith, W. L., DeWitt, D. L. & Garavito, R. M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem.69, 145–182 (2000). CASPubMed Google Scholar
Kühn, H. & O'Donnell, V. B. Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res.45, 334–356 (2006). PubMed Google Scholar
Norris, P. C., Reichart, D., Dumlao, D. S., Glass, C. K. & Dennis, E. A. Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J. Leukocyte Biol.90, 563–574 (2011). CASPubMed Google Scholar
Lawrence, T., Willoughby, D. A. & Gilroy, D. W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol.2, 787–795 (2002). CASPubMed Google Scholar
Shinomiya, S. et al. Regulation of TNFα and interleukin-10 production by prostaglandins I2 and E2: studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. Biochem. Pharmacol.61, 1153–1160 (2001). CASPubMed Google Scholar
Samuelsson, B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science220, 568–575 (1983). CASPubMed Google Scholar
Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature498, 371–375 (2013). The definitive study on LTB4that demonstrates its ability to markedly enhance neutrophil recruitment to sites of tissue damage. PubMed Google Scholar
Murakami, K., Ide, T., Suzuki, M., Mochizuki, T. & Kadowaki, T. Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor α. Biochem. Biophys. Res. Commun.260, 609–613 (1999). CASPubMed Google Scholar
Huang, J. T. et al. Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature400, 378–382 (1999). CASPubMed Google Scholar
Roman, R. J. _P_-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev.82, 131–185 (2002). CASPubMed Google Scholar
von Moltke, J. et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature490, 107–111 (2012). An important demonstration of the life-threatening role that eicosanoids produced by COX1 have in toxic shock, which does not depend on cytokine storms. CASPubMedPubMed Central Google Scholar
Bitto, A. et al. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit. Care16, R32 (2012). PubMedPubMed Central Google Scholar
Balsinde, J., Balboa, M. A. & Dennis, E. A. Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J. Biol. Chem.272, 29317–29321 (1997). CASPubMed Google Scholar
Buczynski, M. W. et al. TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J. Biol. Chem.282, 22834–22847 (2007). CASPubMed Google Scholar
Naraba, H. et al. Segregated coupling of phospholipases A2, cyclooxygenases, and terminal prostanoid synthases in different phases of prostanoid biosynthesis in rat peritoneal macrophages. J. Immunol.160, 2974–2982 (1998). CASPubMed Google Scholar
Brock, T. G., McNish, R. W. & Peters-Golden, M. Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2 . J. Biol. Chem.274, 11660–11666 (1999). CASPubMed Google Scholar
Mandal, A. K. et al. The nuclear membrane organization of leukotriene synthesis. Proc. Natl Acad. Sci. USA105, 20434–20439 (2008). CASPubMed Google Scholar
Kihara, Y. et al. Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophys. J.106, 966–975 (2014). An integrated experimental and computational confirmation of the functional coupling mechanisms for the biosynthesis of prostaglandins and thromboxane by COX1, COX2 and downstream enzymes, including the flux of metabolites over time during inflammation. CASPubMedPubMed Central Google Scholar
Folco, G. & Murphy, R. C. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol. Rev.58, 375–388 (2006). CASPubMed Google Scholar
Chiang, N., Arita, M. & Serhan, C. N. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids73, 163–177 (2005). CASPubMed Google Scholar
Claria, J. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl Acad. Sci. USA92, 9475–9479 (1995). CASPubMed Google Scholar
Morris, T. et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol.183, 2089–2096 (2009). CASPubMed Google Scholar
Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol.2, 612–619 (2001). CASPubMed Google Scholar
Chan, M. M. & Moore, A. R. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J. Immunol.184, 6418–6426 (2010). CASPubMedPubMed Central Google Scholar
Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood104, 2543–2548 (2004). CASPubMed Google Scholar
Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood120, e60–e72 (2012). CASPubMedPubMed Central Google Scholar
Miki, Y. et al. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. J. Exp. Med.210, 1217–1234 (2013). CASPubMedPubMed Central Google Scholar
Dioszeghy, V. et al. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J. Immunol.181, 6514–6524 (2008). CASPubMed Google Scholar
Li, P. et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell155, 200–214 (2013). CASPubMedPubMed Central Google Scholar
Harmon, G. S. et al. Pharmacological correction of a defect in PPAR-γ signaling ameliorates disease severity in _Cftr_-deficient mice. Nat. Med.16, 313–318 (2010). CASPubMedPubMed Central Google Scholar
Mayer-Barber, K. D. & Sher, A. Cytokine and lipid mediator networks in tuberculosis. Immunol. Rev.264, 264–275 (2015). CASPubMedPubMed Central Google Scholar
Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell140, 717–730 (2010). CASPubMedPubMed Central Google Scholar
Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature511, 99–103 (2014). CASPubMedPubMed Central Google Scholar
Coulombe, F. et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity40, 554–568 (2014). CASPubMed Google Scholar
Blaho, V. A., Buczynski, M. W., Brown, C. R. & Dennis, E. A. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J. Biol. Chem.284, 21599–21612 (2009). CASPubMedPubMed Central Google Scholar
Blaho, V. A., Zhang, Y., Hughes-Hanks, J. M. & Brown, C. R. 5-lipoxygenase-deficient mice infected with Borrelia burgdorferi develop persistent arthritis. J. Immunol.186, 3076–3084 (2011). CASPubMedPubMed Central Google Scholar
Blaho, V. A., Mitchell, W. J. & Brown, C. R. Arthritis develops but fails to resolve during inhibition of cyclooxygenase 2 in a murine model of Lyme disease. Arthritis Rheumatism58, 1485–1495 (2008). CASPubMed Google Scholar
Maier, N. K., Leppla, S. H. & Moayeri, M. The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes. J. Immunol.194, 2776–2785 (2015). CASPubMedPubMed Central Google Scholar
Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature484, 524–528 (2012). An example of lipid mediator signalling that guards against antibiotic resistance. CASPubMedPubMed Central Google Scholar
Morita, M. et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell153, 112–125 (2013). An extensive study that links a defect in pro-resolving mediator synthesis to compromised immunity to influenza virus. CASPubMed Google Scholar
Tam, V. C. et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell154, 213–227 (2013). A report of comprehensive transcriptomics, proteomics and lipidomics carried out during mouse influenza virus infection that identified distinct lipid biomarkers during active infection that are also observed in human influenza virus infections. CASPubMedPubMed Central Google Scholar
Ramon, S. et al. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? J. Immunol.193, 6031–6040 (2014). CASPubMedPubMed Central Google Scholar
Aharony, D. Pharmacology of leukotriene receptor antagonists. Am. J. Respiratory Crit. Care Med.157, S214–218; discussion S218–S219, S247–S248 (1998). Google Scholar
Wang, Y., Armando, A. M., Quehenberger, O., Yan, C. & Dennis, E. A. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. Journal of Chromatogr. A.1359, 60–69 (2014). CAS Google Scholar
Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA94, 4318–4323 (1997). CASPubMed Google Scholar
Chou, W. L. et al. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor γ activation. J. Biol. Chem.282, 18162–18172 (2007). CASPubMed Google Scholar
Baker, P. R. et al. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem.280, 42464–42475 (2005). CASPubMedPubMed Central Google Scholar
Groeger, A. L. et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol.6, 433–441 (2010). CASPubMedPubMed Central Google Scholar
Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vascular Biol.31, 986–1000 (2011). CAS Google Scholar
Passarelli, M. K., Ewing, A. G. & Winograd, N. Single-cell lipidomics: characterizing and imaging lipids on the surface of individual Aplysia californica neurons with cluster secondary ion mass spectrometry. Anal. Chem.85, 2231–2238 (2013). CASPubMed Google Scholar
Zemski Berry, K. A., Gordon, W. C., Murphy, R. C. & Bazan, N. G. Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry. J. Lipid Res.55, 504–515 (2014). CASPubMedPubMed Central Google Scholar
Fitzgerald, D. J. & Fitzgerald, G. A. Historical lessons in translational medicine: cyclooxygenase inhibition and P2Y12 antagonism. Circul. Res.112, 174–194 (2013). CAS Google Scholar
Patrono, C. & Baigent, C. Nonsteroidal anti-inflammatory drugs and the heart. Circulation129, 907–916 (2014). PubMed Google Scholar
Serhan, C. N., Hamberg, M. & Samuelsson, B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl Acad. Sci. USA81, 5335–5339 (1984). CASPubMed Google Scholar
Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N. & Bazan, N. G. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA101, 8491–8496 (2004). CASPubMed Google Scholar
Marcheselli, V. L. et al. Novel docosanoids inhibit brain ischemia–reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem.278, 43807–43817 (2003). CASPubMed Google Scholar
Dalli, J., Chiang, N. & Serhan, C. N. Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection. Proc. Natl Acad. Sci. USA111, E4753–E4761 (2014). CASPubMed Google Scholar
Morimoto, K. et al. Prostaglandin E2-EP3 signaling induces inflammatory swelling by mast cell activation. J. Immunol.192, 1130–1137 (2014). CASPubMed Google Scholar
Bray, M. A., Cunningham, F. M., Ford-Hutchinson, A. W. & Smith, M. J. Leukotriene B4: a mediator of vascular permeability. Br. J. Pharmacol.72, 483–486 (1981). CASPubMedPubMed Central Google Scholar
Minami, T. et al. Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br. J. Pharmacol.133, 438–444 (2001). CASPubMedPubMed Central Google Scholar
Lin, C. R. et al. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J. Pharmacol. Exp. Ther.319, 1096–1103 (2006). CASPubMed Google Scholar
Moriyama, T. et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain1, 3 (2005). PubMedPubMed Central Google Scholar
Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci.10, 1131–1133 (2007). CASPubMed Google Scholar
Treffkorn, L., Scheibe, R., Maruyama, T. & Dieter, P. PGE2 exerts its effect on the LPS-induced release of TNF-alpha, ET-1, IL-1alpha, IL-6 and IL-10 via the EP2 and EP4 receptor in rat liver macrophages. Prostaglandins Other Lipid Mediat.74, 113–123 (2004). CASPubMed Google Scholar
Jakobsson, P. J., Thoren, S., Morgenstern, R. & Samuelsson, B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl Acad. Sci. USA96, 7220–7225 (1999). CASPubMed Google Scholar
Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA103, 6682–6687 (2006). CASPubMed Google Scholar
Liang, X., Wu, L., Hand, T. & Andreasson, K. Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J. Neurochem.92, 477–486 (2005). CASPubMed Google Scholar
Taketomi, Y. et al. Mast cell maturation is driven via a group III phospholipase A2–prostaglandin D2–DP1 receptor paracrine axis. Nat. Immunol.14, 554–563 (2013). CASPubMedPubMed Central Google Scholar
Spik, I. et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J. Immunol.174, 3703–3708 (2005). CASPubMed Google Scholar
Schratl, P. et al. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking. J. Immunol.179, 4792–4799 (2007). CASPubMed Google Scholar
Kliewer, S. A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell83, 813–819 (1995). CASPubMed Google Scholar
Forman, B. M. et al. 15-Deoxy-Δ12, 14-prostaglandin _J_2 is a ligand for the adipocyte determination factor PPARγ. Cell83, 803–812 (1995). CASPubMed Google Scholar
Basu, S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2α from physiology to new principles in inflammation. Med. Res. Rev.27, 435–468 (2007). CASPubMed Google Scholar
Woodward, D. F. et al. Prostaglandin F2 alpha effects on intraocular pressure negatively correlate with FP-receptor stimulation. Investigative Ophthalmol. Visual Sci.30, 1838–1842 (1989). CAS Google Scholar
Moncada, S., Herman, A. G., Higgs, E. A. & Vane, J. R. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb. Res.11, 323–344 (1977). CASPubMed Google Scholar
Murata, T. et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature388, 678–682 (1997). CASPubMed Google Scholar
Weiss, H. J. & Turitto, V. T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood53, 244–250 (1979). CASPubMed Google Scholar
Lim, H. et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ. Genes Dev.13, 1561–1574 (1999). CASPubMedPubMed Central Google Scholar
Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer. Proc. Natl Acad. Sci. USA97, 13275–13280 (2000). CASPubMed Google Scholar
Hartwig, J. H. et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell82, 643–653 (1995). CASPubMed Google Scholar
Auch-Schwelk, W., Katusic, Z. S. & Vanhoutte, P. M. Thromboxane A2 receptor antagonists inhibit endothelium-dependent contractions. Hypertension15, 699–703 (1990). CASPubMed Google Scholar
Cogolludo, A., Moreno, L., Bosca, L., Tamargo, J. & Perez-Vizcaino, F. Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase Cζ. Circul. Res.93, 656–663 (2003). CAS Google Scholar
Kabashima, K. et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat. Immunol.4, 694–701 (2003). CASPubMed Google Scholar
Iizuka, Y. et al. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J.24, 4678–4690 (2010). CASPubMed Google Scholar
Narala, V. R. et al. Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-α agonist. J. Biol. Chem.285, 22067–22074 (2010). CASPubMedPubMed Central Google Scholar
Devchand, P. R. et al. The PPARα–leukotriene B4 pathway to inflammation control. Nature384, 39–43 (1996). CASPubMed Google Scholar
Moos, M. P. et al. Cysteinyl leukotriene 2 receptor-mediated vascular permeability via transendothelial vesicle transport. FASEB J.22, 4352–4362 (2008). CASPubMed Google Scholar
Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA97, 6155–6160 (2000). CASPubMed Google Scholar
Ng, V. Y. et al. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metabolism Dispos.35, 1126–1134 (2007). CAS Google Scholar
Liu, Y. et al. The antiinflammatory effect of laminar flow: the role of PPARγ, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc. Natl Acad. Sci. USA102, 16747–16752 (2005). CASPubMed Google Scholar
Inceoglu, B., Schmelzer, K. R., Morisseau, C., Jinks, S. L. & Hammock, B. D. Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs). Prostaglandins Other Lipid Mediat.82, 42–49 (2007). CASPubMed Google Scholar
Gregus, A. M. et al. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl Acad. Sci. USA109, 6721–6726 (2012). CASPubMed Google Scholar
Mrsny, R. J. et al. Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc. Natl Acad. Sci. USA101, 7421–7426 (2004). CASPubMed Google Scholar
Hurley, B. P., Siccardi, D., Mrsny, R. J. & McCormick, B. A. Polymorphonuclear cell transmigration induced by Pseudomonas aeruginosa requires the eicosanoid hepoxilin A3 . J. Immunol.173, 5712–5720 (2004). CASPubMed Google Scholar
Nigam, S., Zafiriou, M. P., Deva, R., Ciccoli, R. & Roux-Van der Merwe, R. Structure, biochemistry and biology of hepoxilins: an update. FEBS J.274, 3503–3512 (2007). CASPubMed Google Scholar
Hammond, V. J. & O'Donnell, V. B. Esterified eicosanoids: generation, characterization and function. Biochim. Biophys. Acta1818, 2403–2412 (2012). CASPubMed Google Scholar
Brezinski, M. E. & Serhan, C. N. Selective incorporation of (15_S_)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc. Natl Acad. Sci. USA87, 6248–6252 (1990). CASPubMed Google Scholar
Rouzer, C. A. & Marnett, L. J. Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J. Biol. Chem.283, 8065–8069 (2008). CASPubMedPubMed Central Google Scholar
Trostchansky, A. et al. Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J. Biol. Chem.286, 12891–12900 (2011). CASPubMedPubMed Central Google Scholar