SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton (original) (raw)

References

  1. Stuurman, N., Heins, S. & Aebi, U. Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol. 122, 42–66 (1998).
    Article CAS PubMed Google Scholar
  2. Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).
    Article CAS PubMed Google Scholar
  3. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  4. Gruenbaum, Y., Margalit, A., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).
    Article CAS Google Scholar
  5. Schirmer, E. C., Florens, L., Guan, T., Yates, J. R. & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 531, 1380–1382 (2003).
    Article Google Scholar
  6. Gruenbaum, Y. et al. The nuclear lamina and its functions in the nucleus. Int. Rev. Cyt. 226, 1–62 (2003).
    Article CAS Google Scholar
  7. Worman, H. J. Inner nuclear membrane and signal transduction. J. Cell Biochem. 96, 1185–1192 (2005).
    Article CAS PubMed Google Scholar
  8. Starr, D. A. & Fischer, J. A. KASH 'n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 27, 1136–1146 (2005).
    Article CAS PubMed Google Scholar
  9. Warren, D. T., Zhang, Q., Weissberg, P. L. & Shanahan, C. M. Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function? Expert. Rev. Mol. Med. 7, 1–15 (2005).
    Article PubMed Google Scholar
  10. McGee, M. D., Rillo, R., Anderson, A. S. & Starr, D. A. UNC-83 Is a KASH protein required for nuclear migration and is recruited to the outer nuclear membrane by a physical interaction with the SUN protein UNC-84. Mol. Biol. Cell 17, 1790–1801 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  11. Padmakumar, V. C. et al. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419–3430 (2005).
    Article CAS PubMed Google Scholar
  12. Malone, C. J., Fixsen, W. D., Horvitz, H. R. & Han, M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126, 3171–3181 (1999).
    CAS PubMed Google Scholar
  13. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  14. Lee, K. K. et al. Lamin-dependent localization of UNC-84, a protein required for nuclear migration in C. elegans. Mol. Biol. Cell 13, 892–901 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Hasan, S. et al. Nuclear envelope localization of human UNC84A does not require nuclear lamins. FEBS Lett. 580, 1263–1268 (2006).
    Article CAS PubMed Google Scholar
  16. Hagan, I. & Yanagida, M. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129, 1033–1047 (1995).
    Article CAS PubMed Google Scholar
  17. Starr, D. A. & Han, M. ANChors away: an actin based mechanism of nuclear positioning. J. Cell Sci. 116, 211–216 (2003).
    Article CAS PubMed Google Scholar
  18. Fridkin, A. et al. Matefin, a C. elegans germ-line specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc. Natl Acad. Sci. USA 101, 6987–6992 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  19. Haque, F. et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26, 3738–3851 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  20. Hodzic, D. M., Yeater, D. B., Bengtsson, L., Otto, H. & Stahl, P. D. Sun2 is a novel mammalian inner nuclear membrane protein. J. Biol. Chem. 279, 25805–25812 (2004).
    Article CAS PubMed Google Scholar
  21. Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).
    CAS PubMed Google Scholar
  22. Libotte, T. et al. Lamin A/C-dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope. Mol. Biol. Cell 16, 3411–3424 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  23. Zhang, Q. et al. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J. Cell Sci. 118, 673–687 (2005).
    Article CAS PubMed Google Scholar
  24. Zhang, Q., Ragnauth, C., Greener, J. M., Shanahan, C. M. & Roberts, R. G. The nesprins are giant actin-binding proteins, orthologous to Drosophila muscle protein MSP-300. Genomics 80, 473–481 (2002).
    Article CAS PubMed Google Scholar
  25. Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  26. Starr, D. A. & Han, M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 11, 406–409 (2002).
    Article Google Scholar
  27. Patterson, K. et al. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell 15, 600–610 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  28. Fischer, J. A. et al. Drosophila klarsicht has distinct subcellular localization domains for nuclear envelope and microtubule localization in the eye. Genetics 168, 1385–1393 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  29. Mislow, M. K. J. et al. Nesprin-1a self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135–140 (2002).
    Article CAS PubMed Google Scholar
  30. Muchir, A. et al. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 291, 352–362 (2003).
    Article CAS PubMed Google Scholar
  31. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  32. Pare, G. C., Easlick, J. L., Mislow, J. M., McNally, E. M. & Kapiloff, M. S. Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp. Cell Res. 303, 388–399 (2005).
    Article CAS PubMed Google Scholar
  33. Yu, J. et al. The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Dev. Biol. 289, 336–345 (2006).
    Article CAS PubMed Google Scholar
  34. Grady, R. M., Starr, D. A., Ackerman, G. L., Sanes, J. R. & Han, M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc. Natl Acad. Sci. USA 102, 4359–4364 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  35. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).
    CAS PubMed PubMed Central Google Scholar
  36. Malone, C. J. et al. The C. elegans Hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836 (2003).
    Article CAS PubMed Google Scholar
  37. Mislow, J. M., Kim, M. S., Davis, D. B. & McNally, E. M. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J. Cell Sci. 115, 61–70 (2002).
    CAS PubMed Google Scholar
  38. Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol. 140, 3–9 (2002).
    Article CAS PubMed Google Scholar
  39. Bettinger, B. T., Gilbert, D. M. & Amberg, D. C. Actin up in the nucleus. Nature Rev. Mol. Cell Biol. 5, 410–415 (2004).
    Article CAS Google Scholar
  40. Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, e321 (2004).
    Article Google Scholar
  41. Smythe, C., Jenkins, H. E. & Hutchison, C. J. Incorporation of the nuclear pore basket protein Nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J. 19, 3918–3931 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  42. Greber, U. F. & Gerace, L. Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J. Cell Biol. 116, 15–30 (1992).
    Article CAS PubMed Google Scholar
  43. Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111, 701–712 (1998).
    CAS PubMed Google Scholar
  44. Chikashige, Y. et al. Meiotic proteins Bqt1 and Bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125, 59–69 (2006).
    Article CAS PubMed Google Scholar
  45. Niwa, O., Shimanuki, M. & Miki, F. Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J. 19, 3831–3840 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  46. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).
    Article CAS PubMed Google Scholar
  47. Worman, H. J. & Courvalin, J. C. Nuclear envelope, nuclear lamina, and inherited disease. Int. Rev. Cytol. 246, 231–279 (2005).
    Article CAS PubMed Google Scholar
  48. Cohen, M., Lee, K. K., Wilson, K. L. & Gruenbaum, Y. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci. 26, 41–47 (2001).
    Article CAS PubMed Google Scholar
  49. Mattout, A., Dechat, T., Adam, S. A., Goldman, R. D. & Gruenbaum, Y. Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. 18, 335–341 (2006).
    Article CAS PubMed Google Scholar
  50. Corrigan, D. P. et al. Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem. J. 387, 129–138 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  51. Zastrow, M. S., Vlcek, S. & Wilson, K. L. Proteins that bind A-type lamins: integrating isolated clues. J. Cell Sci. 117, 979–987 (2004).
    Article CAS PubMed Google Scholar
  52. Goldman, R. D., Gruenbaum, Y., Moir, R. D., Shumaker, D. K. & Spann, T. P. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002).
    Article CAS PubMed Google Scholar
  53. Decostre, V., Ben Yaou, R. & Bonne, G. Laminopathies affecting skeletal and cardiac muscles: clinical and pathophysiological aspects. Acta Myol. 24, 104–109 (2005).
    CAS PubMed Google Scholar
  54. Broers, J. L., Hutchison, C. J. & Ramaekers, F. C. Laminopathies. J. Pathol. 204, 478–488 (2004).
    Article CAS PubMed Google Scholar
  55. Thompson, J. D., Higgins, D. G. & Gibson, T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc. Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar

Download references