Cueni, L. N. & Detmar, M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Invest. Dermatol.126, 2167–2177 (2006). ArticleCASPubMed Google Scholar
Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature438, 946–953 (2005). ArticleCASPubMed Google Scholar
He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res.65, 4739–4746 (2005). ArticleCASPubMed Google Scholar
Achen, M. G. & Stacker, S. A. Tumor lymphangiogenesis and metastatic spread — new players begin to emerge. Int. J. Cancer119, 1755–1760 (2006). ArticleCASPubMed Google Scholar
Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol.39, 469–478 (2006). CASPubMed Google Scholar
Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med.9, 669–676 (2003). ArticleCASPubMed Google Scholar
Ladomery, M. R., Harper, S. J. & Bates, D. O. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett.249, 133–142 (2006). ArticleCASPubMed Google Scholar
Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res.65, 3967–3979 (2005). ArticleCASPubMed Google Scholar
Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol.169, 681–691 (2005). ArticleCASPubMedPubMed Central Google Scholar
Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res.97, 512–523 (2005). ArticleCASPubMed Google Scholar
Sainson, R. C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J.19, 1027–1029 (2005). ArticleCASPubMed Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). One of several papers, which shows that endothelial sprouting and the selection of tip cells in the developing mouse retina are controlled by DLL4–Notch signalling. ArticleCASPubMed Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). ArticleCASPubMed Google Scholar
Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature444, 1032–1037 (2006). References 16 and 17 demonstrate that blocking of DLL4-mediated signalling dramatically enhances angiogenic sprouting of tumour blood vessels. This process leads to compromised vessel formation, increased hypoxia and reduced tumour growth. ArticleCASPubMed Google Scholar
Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA104, 3219–3224 (2007). ArticleCASPubMedPubMed Central Google Scholar
Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA104, 3225–3230 (2007). ArticleCASPubMedPubMed Central Google Scholar
Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development134, 839–844 (2007). ArticleCASPubMed Google Scholar
Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature445, 781–784 (2007). References 20 and 21 show that Notch signalling by Dll4 controls the angiogenic behaviour of endothelial cells in zebrafish intersegmental vessels. ArticleCASPubMed Google Scholar
Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev.16, 2684–2698 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol.161, 1163–1177 (2003). Characterization of the endothelial tip cell in the retina and the role of matrix-bound VEGF gradients in the guidance of vascular sprouts. ArticleCASPubMedPubMed Central Google Scholar
Klagsbrun, M., Takashima, S. & Mamluk, R. The role of neuropilin in vascular and tumor biology. Adv. Exp. Med. Biol.515, 33–48 (2002). ArticleCASPubMed Google Scholar
Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med.12, 13–19 (2002). ArticleCASPubMed Google Scholar
Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell11, 53–67 (2007). ArticleCASPubMed Google Scholar
Gerhardt, H. et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev. Dyn.231, 503–509 (2004). ArticleCASPubMed Google Scholar
Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature436, 193–200 (2005). ArticleCASPubMed Google Scholar
Eichmann, A., Makinen, T. & Alitalo, K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev.19, 1013–1021 (2005). ArticleCASPubMed Google Scholar
Kruger, R. P., Aurandt, J. & Guan, K. L. Semaphorins command cells to move. Nature Rev. Mol. Cell Biol.6, 789–800 (2005). ArticleCAS Google Scholar
Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science307, 265–268 (2005). ArticleCASPubMed Google Scholar
Gitler, A. D., Lu, M. M. & Epstein, J. A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell7, 107–116 (2004). ArticleCASPubMed Google Scholar
Torres-Vazquez, J. et al. Semaphorin–plexin signaling guides patterning of the developing vasculature. Dev. Cell7, 117–123 (2004). ArticleCASPubMed Google Scholar
Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature432, 179–186 (2004). Identification of UNC5B as a guidance receptor that controls vascular sprouting, which is reminiscent of the role of UNC5 molecules in the pathfinding of axonal growth cones. ArticleCASPubMed Google Scholar
Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol.261, 251–267 (2003). ArticleCASPubMed Google Scholar
Suchting, S., Heal, P., Tahtis, K., Stewart, L. M. & Bicknell, R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J.19, 121–123 (2005). ArticleCASPubMed Google Scholar
Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442, 453–456 (2006). Beautiful demonstration that the lumen of endothelial cells in zebrafish intersegmental vessels is formed through the fusion of intracellular vacuoles. This is followed by intercellular fusion processes. ArticleCASPubMed Google Scholar
Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell112, 19–28 (2003). ArticleCASPubMed Google Scholar
Davis, G. E. & Bayless, K. J. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation10, 27–44 (2003). ArticleCASPubMed Google Scholar
Parker, L. H. et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature428, 754–758 (2004). ArticleCASPubMed Google Scholar
Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med.9, 661–668 (2003). ArticleCASPubMed Google Scholar
Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Rev. Cancer2, 826–835 (2002). ArticleCAS Google Scholar
Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124, 175–189 (2006). Demonstration that the recruitment of perivascular bone-marrow-derived circulating cells has an important role in adult angiogenesis. ArticleCASPubMed Google Scholar
Djonov, V. & Makanya, A. N. New insights into intussusceptive angiogenesis. EXS 17–33 (2005).
Torres-Vazquez, J., Kamei, M. & Weinstein, B. M. Molecular distinction between arteries and veins. Cell Tissue Res.314, 43–59 (2003). ArticlePubMed Google Scholar
Heil, M., Eitenmuller, I., Schmitz-Rixen, T. & Schaper, W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med.10, 45–55 (2006). ArticleCASPubMed Google Scholar
Brouillard, P. & Vikkula, M. Vascular malformations: localized defects in vascular morphogenesis. Clin. Genet.63, 340–351 (2003). ArticleCASPubMed Google Scholar
Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development132, 1751–1762 (2005). ArticleCASPubMed Google Scholar
Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol.7, 678–689 (2006). ArticleCAS Google Scholar
Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev.14, 1343–1352 (2000). CASPubMedPubMed Central Google Scholar
Koo, B. K. et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development132, 3459–3470 (2005). ArticleCASPubMed Google Scholar
Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev.18, 901–911 (2004). ArticleCASPubMedPubMed Central Google Scholar
Krebs, L. T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev.18, 2469–2473 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA101, 15949–15954 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nakajima, M. et al. Abnormal blood vessel development in mice lacking presenilin-1. Mech. Dev.120, 657–667 (2003). ArticleCASPubMed Google Scholar
Himanen, J. P. & Nikolov, D. B. Eph receptors and ephrins. Int. J. Biochem. Cell Biol.35, 130–134 (2003). ArticleCASPubMed Google Scholar
Murai, K. K. & Pasquale, E. B. 'Eph'ective signaling: forward, reverse and crosstalk. J. Cell Sci.116, 2823–2832 (2003). ArticleCASPubMed Google Scholar
Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood107, 931–939 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hainaud, P. et al. The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-Ephrin b2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res.66, 8501–8510 (2006). ArticleCASPubMed Google Scholar
Mukouyama, Y. S., Gerber, H. P., Ferrara, N., Gu, C. & Anderson, D. J. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin1-mediated positive feedback. Development132, 941–52 (2005). ArticleCASPubMed Google Scholar
Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development129, 4797–4806 (2002). CASPubMed Google Scholar
Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest.109, 327–336 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell5, 45–57 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell10, 625–634 (2006). ArticleCASPubMed Google Scholar
Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol.164, 81–89 (2004). ArticlePubMedPubMed Central Google Scholar
le Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development131, 361–375 (2004). ArticleCASPubMed Google Scholar
You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature435, 98–104 (2005). Shows that the nuclear orphan receptor COUP-TFII suppresses the expression of components of the Notch pathway in venous endothelial cells. Because Notch signalling controls arterial differentiation, COUP-TFII is crucial for the specification of arteriovenous identity. ArticleCASPubMed Google Scholar
Seo, S. et al. The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol.294, 458–470 (2006). ArticleCASPubMed Google Scholar
LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature412, 877–884 (2001). CASPubMed Google Scholar
Oliver, G. Lymphatic vasculature development. Nature Rev. Immunol.4, 35–45 (2004). ArticleCAS Google Scholar
Oliver, G. & Alitalo, K. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol.21, 457–483 (2005). ArticleCASPubMed Google Scholar
Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J.21, 4593–4599 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sebzda, E. et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev. Cell11, 349–361 (2006). ArticleCASPubMed Google Scholar
Hong, Y. K. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn.225, 351–357 (2002). ArticleCASPubMed Google Scholar
Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J.21, 1505–1513 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). Identification of PROX1 as the regulator of the first steps of lymphangiogenic growth in the mouse embryo. ArticleCASPubMed Google Scholar
Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nature Genet.37, 1072–1081 (2005). ArticleCASPubMed Google Scholar
Backhed, F., Crawford, P. A., O'Donnell, D. & Gordon, J. I. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc. Natl Acad. Sci. USA104, 606–611 (2007). ArticleCASPubMedPubMed Central Google Scholar
Abtahian, F. et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science299, 247–251 (2003). ArticleCASPubMedPubMed Central Google Scholar
Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunol.5, 74–80 (2004). Demonstration that the sprouting of PROX1-expressing lymphatic endothelial cells from embryonic veins is controlled by VEGFC. ArticleCAS Google Scholar
Baldwin, M. E. et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol. Cell. Biol.25, 2441–2449 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tammela, T., Enholm, B., Alitalo, K. & Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res.65, 550–563 (2005). ArticleCASPubMed Google Scholar
Ober, E. A. et al. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep.5, 78–84 (2004). ArticleCASPubMed Google Scholar
Dumont, D. J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science282, 946–949 (1998). ArticleCASPubMed Google Scholar
Karpanen, T. et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol.169, 708–718 (2006). ArticleCASPubMedPubMed Central Google Scholar
Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med.7, 199–205 (2001). ArticleCASPubMed Google Scholar
Laakkonen, P. et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res.67, 593–599 (2007). ArticleCASPubMed Google Scholar
Karpanen, T. et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J.20, 1462–72 (2006). ArticleCASPubMed Google Scholar
Nagy, J. A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med.196, 1497–1506 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hong, Y. K. et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the α1β1 and α2β1 integrins. FASEB J.18, 1111–1113 (2004). ArticleCASPubMed Google Scholar
Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med.201, 1089–1099 (2005). ArticleCASPubMedPubMed Central Google Scholar
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest.115, 247–257 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest.113, 1040–1050 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell3, 411–423 (2002). ArticleCASPubMed Google Scholar
Tammela, T. et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood105, 4642–4648 (2005). ArticleCASPubMed Google Scholar
Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev.19, 397–410 (2005). ArticleCASPubMedPubMed Central Google Scholar
Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell124, 161–173 (2006). ArticleCASPubMed Google Scholar
Fang, J. et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am. J. Hum. Genet.67, 1382–1388 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kriederman, B. M. et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum. Mol. Genet.12, 1179–1185 (2003). ArticleCASPubMed Google Scholar
Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Med.10, 974–981 (2004). ArticleCASPubMed Google Scholar
Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev.15, 102–111 (2005). ArticleCASPubMed Google Scholar
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005). ArticleCASPubMed Google Scholar
Betsholtz, C., Lindblom, P. & Gerhardt, H. Role of pericytes in vascular morphogenesis. EXS 115–125 (2005).
Rolny, C. et al. Platelet-derived growth factor receptor-β promotes early endothelial cell differentiation. Blood108, 1877–1886 (2006). ArticleCASPubMed Google Scholar
Allende, M. L. & Proia, R. L. Sphingosine-1-phosphate receptors and the development of the vascular system. Biochim. Biophys. Acta1582, 222–227 (2002). ArticleCASPubMed Google Scholar
Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Rev. Mol. Cell Biol.4, 397–407 (2003). ArticleCAS Google Scholar
Kono, M. et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem.279, 29367–29373 (2004). ArticleCASPubMed Google Scholar
Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest.106, 951–961 (2000). ArticleCASPubMedPubMed Central Google Scholar
Allende, M. L., Yamashita, T. & Proia, R. L. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood102, 3665–3667 (2003). ArticleCASPubMed Google Scholar
Paik, J. H. et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev.18, 2392–2403 (2004). ArticleCASPubMedPubMed Central Google Scholar
Luo, Y. & Radice, G. L. N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J. Cell Biol.169, 29–34 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chen, S. & Lechleider, R. J. Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ. Res.94, 1195–1202 (2004). CASPubMed Google Scholar
Pipes, G. C., Creemers, E. E. & Olson, E. N. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev.20, 1545–1556 (2006). ArticleCASPubMed Google Scholar
Miano, J. M. et al. Restricted inactivation of serum response factor to the cardiovascular system. Proc. Natl Acad. Sci. USA101, 17132–17137 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, G. et al. δEF1 mediates TGF-β signaling in vascular smooth muscle cell differentiation. Dev. Cell11, 93–104 (2006). ArticleCASPubMed Google Scholar
Chang, D. F. et al. Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors. Dev. Cell4, 107–118 (2003). ArticleCASPubMed Google Scholar
Bertolino, P., Deckers, M., Lebrin, F. & ten Dijke, P. Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest128, 585S–590S (2005). ArticleCASPubMed Google Scholar
Goumans, M. J., Lebrin, F. & Valdimarsdottir, G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc. Med.13, 301–307 (2003). ArticleCASPubMed Google Scholar
Ward, N. L. & Dumont, D. J. The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin. Cell Dev. Biol.13, 19–27 (2002). ArticleCASPubMed Google Scholar
Thurston, G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res.314, 61–68 (2003). ArticleCASPubMed Google Scholar
Thurston, G. et al. The anti-inflammatory actions of angiopoietin-1. EXS 233–245 (2005).
Eklund, L. & Olsen, B. R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp. Cell Res.312, 630–641 (2006). ArticleCASPubMed Google Scholar
Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nature Med.12, 235–239 (2006). ArticleCASPubMed Google Scholar
Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). ArticleCASPubMed Google Scholar
Tait, C. R. & Jones, P. F. Angiopoietins in tumours: the angiogenic switch. J. Pathol.204, 1–10 (2004). ArticleCASPubMed Google Scholar
Kobayashi, H. & Lin, P. C. Angiopoietin/Tie2 signaling, tumor angiogenesis and inflammatory diseases. Front. Biosci.10, 666–674 (2005). ArticleCASPubMed Google Scholar
Jones, N., Iljin, K., Dumont, D. J. & Alitalo, K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nature Rev. Mol. Cell Biol.2, 257–267 (2001). ArticleCAS Google Scholar
Saharinen, P. et al. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J. Cell Biol.169, 239–243 (2005). ArticleCASPubMedPubMed Central Google Scholar
Le Bras, B. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neurosci.9, 340–348 (2006). ArticleCASPubMed Google Scholar
Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci.8, 85–92 (2005). References 137 and 138 show that VEGF signalling is not confined to endothelial cells. VEGFC stimulates the proliferation of glial-cell precursors and VEGFA promotes the survival of motoneurons in an animal model of amyotrophic lateral sclerosis (ALS). ArticleCASPubMed Google Scholar
Li, D. Y. et al. Defective angiogenesis in mice lacking endoglin. Science284, 1534–1537 (1999). ArticleCASPubMed Google Scholar
McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet.8, 345–351 (1994). ArticleCASPubMed Google Scholar
Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development131, 1619–1628 (2004). ArticleCASPubMed Google Scholar
Matsui, K., Breitender-Geleff, S., Soleiman, A., Kowalski, H. & Kerjaschki, D. Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes. Nephrol. Dial. Transplant.14 (Suppl.1), 9–11 (1999). ArticleCASPubMed Google Scholar
Schacht, V. et al. T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.22, 3546–3556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jackson, D. G. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS112, 526–538 (2004). ArticleCASPubMed Google Scholar
Hirakawa, S. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol.162, 575–586 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bamji, S. X. Cadherins: actin with the cytoskeleton to form synapses. Neuron47, 175–178 (2005). ArticleCASPubMed Google Scholar
Tillet, E. et al. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res.310, 392–400 (2005). ArticleCASPubMed Google Scholar
Tallquist, M. D., French, W. J. & Soriano, P. Additive effects of PDGF receptor β signaling pathways in vascular smooth muscle cell development. PLoS Biol.1, e52 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev.17, 1835–1840 (2003). ArticleCASPubMedPubMed Central Google Scholar