A structural understanding of the dynamic ribosome machine (original) (raw)

References

  1. Palade, G. E. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1, 59–68 (1955).
    Article CAS Google Scholar
  2. Watson, J. D. Involvement of RNA in the synthesis of proteins. Science 140, 17–26 (1963).
    Article CAS Google Scholar
  3. Lake, J. A. Ribosomal structure determined by electron microscopy of E. coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105, 131–159 (1976).
    Article CAS Google Scholar
  4. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005). Presents the first complete atomic structure of the 70S ribosome from E. coli derived from a high-resolution map, but without bound substrates.
    Article CAS Google Scholar
  5. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006). The most complete and accurate structure of the 70S ribosome published to date also has bound mRNA, as well as tRNAs at the A site (partial), P site and E site.
    Article CAS Google Scholar
  6. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H. F. Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements. Cell 126, 1066–1077 (2006).
    Article Google Scholar
  7. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001). The structure of the 30S subunit with mRNA and an anticodon stem-loop RNA mimic of tRNA shows how decoding occurs in the A site.
    Article CAS Google Scholar
  8. Nissen, P., Ban, N., Hansen, J., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).
    Article CAS Google Scholar
  9. Schmeing, T. M., Huang, K. S., Strobel, S. A. & Steitz, T. A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524 (2005). Shows that the binding of an appropriate A-site substrate to the 50S subunit complex with a P-site substrate induces an active site conformational change that is essential for catalysis.
    Article CAS Google Scholar
  10. Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A. & Steitz, T. A. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005).
    Article CAS Google Scholar
  11. Schmeing, T. M. et al. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nature Struct. Biol. 9, 225–230 (2002).
    CAS PubMed Google Scholar
  12. Green, R. & Noller, H. F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997).
    Article CAS Google Scholar
  13. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001).
    Article CAS Google Scholar
  14. Ogle, J. M., Murphy, F. V. I., Tarry, M. J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).
    Article CAS Google Scholar
  15. Rodnina, M. V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome's kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).
    Article CAS Google Scholar
  16. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).
    Article CAS Google Scholar
  17. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nature Struct. Biol. 9, 849–854 (2002).
    CAS PubMed Google Scholar
  18. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol. 10, 899–906 (2003).
    Article CAS Google Scholar
  19. Berk, V., Zhang, W., Pai, R. D. & Cate, J. H. D. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl Acad. Sci. USA 103, 15830–15834 (2006).
    Article CAS Google Scholar
  20. Maguire, B. A., Benaminov, A. D., Ramu, H., Mankin, A. S. & Zimmermann, R. A. A protein component at the heart of an RNA machine: the importance of protein L27 for the function of the bacterial ribosome. Mol. Cell. 20, 427–435 (2005).
    Article CAS Google Scholar
  21. Moore, P. B. & Steitz, T. A. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 72, 813–850 (2003).
    Article CAS Google Scholar
  22. Hansen, J. L., Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structural insights into peptide bond formation. Proc. Natl Acad. Sci. USA 99, 11670–11675 (2002).
    Article CAS Google Scholar
  23. Koshland, D. E. Mechanism of transfer enzymes. In The Enzymes (Boyer, P. D., Lardy, H. & Myrback, K., eds) 305–346 (Academic Press, New York, 1959).
    Google Scholar
  24. Bennett, W. S. & Steitz, T. A. Glucose-induced conformational change in yeast hexokinase. Proc. Natl Acad. Sci. USA 75, 4848–4852 (1976).
    Article Google Scholar
  25. Beringer, M. & Rodnina, M. V. The ribosomal peptidyl transferase. Mol. Cell 26, 311–321 (2007).
    Article CAS Google Scholar
  26. Caskey, C. T., Beaudet, A. L., Scolnick, E. M. & Rosman, M. Hydrolysis of fMet-tRNA by peptidyl transferase. Proc. Natl Acad. Sci. USA 68, 3163–3167 (1971).
    Article CAS Google Scholar
  27. Pape, T., Wintermeyer, W. & Rodnina, M. V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nature Struct. Biol. 7, 104–107 (2000).
    Article CAS Google Scholar
  28. Paige, M. I. & Jencks, W. P. Entropic contributions to rate acceleration in enzymatic and intramolecular reactions and the chelate effect. Proc. Natl Acad. Sci. USA 68, 1678–1683 (1971).
    Article Google Scholar
  29. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).
    Article CAS Google Scholar
  30. Dorner, S., Panuschka, F., Schmid, W. & Barta, A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH activity. Nucl. Acids Res. 31, 6536–6542 (2003).
    Article CAS Google Scholar
  31. Weinger, J. S., Parnell, K. M., Dorner, S., Green, R. & Strobel, S. A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Struct. Biol. 11, 1101–1106 (2004). Biochemical demonstration of the large contribution of the 2′ hydroxyl group of A76 of the P-site substrate to peptide bond formation.
    Article CAS Google Scholar
  32. Moazed, D. & Noller, H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).
    Article CAS Google Scholar
  33. Gao, N. et al. Mechanism for the disassembly of the post termination complex inferred from cryo-EM studies. Mol. Cell 18, 663–674 (2005).
    Article CAS Google Scholar
  34. Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M. & Frank, J. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).
    Article CAS Google Scholar
  35. Ævarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).
    Article Google Scholar
  36. Czworkowski, J., Wang, J., Steitz, T. A. & Moore, P. B. The crystal structure of elongation factor G complexed with DGP, at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).
    Article CAS Google Scholar
  37. Rodnina, M., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1979).
    Article Google Scholar
  38. Frank, J. & Agrawal, R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000). The important rotation of the small subunit relative to the large subunit on EFG–GTP binding is shown in this cryo-EM study.
    Article CAS Google Scholar
  39. Connell, S. R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007). The highest-resolution cryo-EM structure of the 70S ribosome with bound EFG gives insights into the mechanism of its function in translocation.
    Article CAS Google Scholar
  40. Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structure of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9, 1345–1352 (2003).
    Article CAS Google Scholar
  41. Schroeder, S., Blaha, G., Tirado-Rives, J., Steitz, T. A. & Moore, P. B. The structures of antibiotics bound to the E-site region of the 50S ribosomal subunit of Haloarcula marismortui; 13-deoxytedanolide and girodazole. J. Mol. Biol. 367, 1471–1479 (2007).
    Article CAS Google Scholar
  42. Milligan, R. A. & Unwin, P. N. In vitro crystallization of ribosomes from chick embryos. J. Cell Biol. 95, 648–653 (1982).
    Article CAS Google Scholar
  43. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).
    Article CAS Google Scholar
  44. Gabashvili, I. S. et al. The polypeptide tunnel system in the ribosome and its gating in erythromycin mutants of L4 and L22. Mol. Cell 8, 181–188 (2001).
    Article CAS Google Scholar
  45. Voss, N. R., Gerstein, M., Steitz, T. A. & Moore, P. B. The geometry of the ribosomal exit tunnel. J. Mol. Biol. 360, 893–906 (2006).
    Article CAS Google Scholar
  46. Gilbert, R. J. et al. Three dimensional structures of translating ribosomes by cryo-EM. Mol. Cell 14, 57–66 (2004).
    Article CAS Google Scholar
  47. Malkin, L. I. & Rich, A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346 (1967).
    Article CAS Google Scholar
  48. Klein, D. J., Moore, P. B. & Steitz, T. A. The roles of ribosomal proteins in the structure, assembly and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141–177 (2004).
    Article CAS Google Scholar
  49. Ferhtz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004).
    Article Google Scholar
  50. Schlünzen, F. et al. The binding mode of the trigger factor in the ribosome: implications for protein folding and SRP interaction. Structure 13, 1685–1694 (2005).
    Article Google Scholar
  51. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1256–1266 (2005).
    Article Google Scholar
  52. Ito, K., Uno, M. & Nakamura, Y. A tripeptide “anticodon” deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000).
    Article CAS Google Scholar
  53. Borovinskaya, M. A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nature Struct. Mol. Biol. 14, 727–732 (2007).
    Article CAS Google Scholar
  54. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nature Struct. Mol. Biol. 14, 733–737 (2007).
    Article CAS Google Scholar
  55. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).
    Article CAS Google Scholar
  56. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).
    Article CAS Google Scholar
  57. Dever, T. E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).
    Article CAS Google Scholar
  58. Sonenberg, N. & Dever, T. E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).
    Article CAS Google Scholar
  59. Simonovic, M. & Steitz, T. A. Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and 50S subunit. Proc. Natl Acad. Sci. USA. 105, 500–505 (2008).
    Article CAS Google Scholar
  60. Brunnelle, J. L. et al. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006).
    Article Google Scholar
  61. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).
    Article CAS Google Scholar
  62. Janosi, L., Shimizu, I., Kaji, A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl Acad. Sci. USA 91, 4249–4253 (1994).
    Article CAS Google Scholar

Download references