Expansion and evolution of cell death programmes (original) (raw)
Yuan, J. & Horvitz, H. R. A first insight into the molecular mechanisms of apoptosis. Cell116, S53–S56 (2004). The authors provide in-depth insight into the discovery of the apoptotic machinery inC. elegans . ArticleCASPubMed Google Scholar
Clarke, P. G. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol.181, 195–213 (1990). This paper provides an early morphological analysis of developmental cell death and describes the existence of multiple forms of PCD. ArticleCAS Google Scholar
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). ArticleCASPubMed Google Scholar
Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science275, 206–209 (1997). ArticleCASPubMed Google Scholar
Horvitz, H. R., Shaham, S. & Hengartner, M. O. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol.59, 377–385 (1994). ArticleCASPubMed Google Scholar
Conradt, B. & Xue, D. Programmed cell death. WormBook, 1–13 (2005).
Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet.14, 410–416 (1998). ArticleCASPubMed Google Scholar
Hofmann, E. R. et al. Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr. Biol.12, 1908–1918 (2002). ArticleCASPubMed Google Scholar
Tait, S. W. et al. Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its _N_-terminal fragment. J. Cell Biol.179, 1453–1466 (2007). ArticleCASPubMedPubMed Central Google Scholar
Konishi, Y., Lehtinen, M., Donovan, N. & Bonni, A. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol. Cell9, 1005–1016 (2002). ArticleCASPubMed Google Scholar
Zha, J., Weiler, S., Oh, K. J., Wei, M. C. & Korsmeyer, S. J. Posttranslational _N_-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science290, 1761–1765 (2000). ArticleCASPubMed Google Scholar
Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998). ArticleCASPubMed Google Scholar
Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol.9, 47–59 (2008). ArticleCAS Google Scholar
Scorrano, L. & Korsmeyer, S. J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun.304, 437–444 (2003). This paper describes in detail the molecular mechanism of the key step in apoptosis where mitochondrial cytochromecis released. ArticleCASPubMed Google Scholar
Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science315, 856–859 (2007). This paper presents evidence that suggests that anti-apoptotic BCL2 family members, rather than BAX and BAK, are the targets of BH3-only proteins. ArticleCASPubMed Google Scholar
Gogvadze, V., Orrenius, S. & Zhivotovsky, B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta1757, 639–647 (2006). ArticleCASPubMed Google Scholar
Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. & Peter, M. E. Apoptosis signaling by death receptors. Eur. J. Biochem.254, 439–459 (1998). ArticleCASPubMed Google Scholar
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190 (2003). In this paper, upstream signalling events that lead to the activation of apoptosis are described. ArticleCASPubMed Google Scholar
Barnhart, B. C., Alappat, E. C. & Peter, M. E. The CD95 type I/type II model. Semin. Immunol.15, 185–193 (2003). In this paper, distinct pathways (direct or mitochondria-mediated) of executioner caspase activation by death receptors are described in detail. ArticleCASPubMed Google Scholar
McStay, G. P., Salvesen, G. S. & Green, D. R. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15, 322–331 (2007). Google Scholar
Sprick, M. R. et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J.21, 4520–4530 (2002). ArticleCASPubMedPubMed Central Google Scholar
Su, H. et al. Requirement for caspase-8 in NF-kB activation by antigen receptor. Science307, 1465–1468 (2005). ArticleCASPubMed Google Scholar
Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science297, 1352–1354 (2002). In this paper, a specific role for caspase-2 in genotoxic stress-induced apoptosis is shown. ArticleCASPubMed Google Scholar
Hitomi, J. et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J. Cell Biol.165, 347–356 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature403, 98–103 (2000). This paper provides the first demonstration of the specific role of caspase-12 in ER stress response. ArticleCASPubMed Google Scholar
Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem.274, 11549–11556 (1999). The authors establish the existence of the caspase-9-activating apoptotosome complex. ArticleCASPubMed Google Scholar
Gao, Z., Shao, Y. & Jiang, X. Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J. Biol. Chem.280, 38271–38275 (2005). ArticleCASPubMed Google Scholar
Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999). This is one of the earliest papers establishing specific roles of a particular BH3-only factor, BIM, in response to specific upstream signals. ArticleCASPubMed Google Scholar
Yu, J. & Zhang, L. The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun.331, 851–588 (2005). ArticleCASPubMed Google Scholar
Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc. Natl Acad. Sci. USA104, 3787–3792 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell17, 393–403 (2005). This paper demonstrates that selective interactions of pro- and anti-apoptotic BCL2 family members contribute to the regulation of the mitochondrial step in apoptosis. ArticleCASPubMed Google Scholar
Takai, Y. et al. Caspase-12 compensates for lack of caspase-2 and caspase-3 in female germ cells. Apoptosis12, 791–800 (2007). ArticleCASPubMed Google Scholar
Troy, C. M. et al. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J. Neurosci.21, 5007–5016 (2001). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Calvo, M. et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem.273, 32608–32613 (1998). ArticleCASPubMed Google Scholar
Abraham, M. C., Lu, Y. & Shaham, S. A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev. Cell12, 73–86 (2007). ArticleCASPubMed Google Scholar
Oppenheim, R. W. et al. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J. Neurosci.21, 4752–4760 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lee, C. Y. & Baehrecke, E. H. Steroid regulation of autophagic programmed cell death during development. Development128, 1443–1455 (2001). ArticleCASPubMed Google Scholar
Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell131, 1137–1148 (2007). This paper demonstrates that autophagic cell death is specifically activated during development under apoptosis-competent conditions. ArticleCASPubMedPubMed Central Google Scholar
Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem.282, 18573–18583 (2007). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol.169, 425–434 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004). This paper demonstrates the crucial role of autophagyin vivoin maintaining survival under nutrient-deprivation conditions. ArticleCASPubMed Google Scholar
Juhasz, G., Erdi, B., Sass, M. & Neufeld, T. P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev.21, 3061–3066 (2007). ArticleCASPubMedPubMed Central Google Scholar
Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest.116, 2161–2172 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pattingre, S., Espert, L., Biard-Piechaczyk, M. & Codogno, P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie90, 313–323 (2007). ArticlePubMedCAS Google Scholar
Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol.8, 741–752 (2007). ArticleCAS Google Scholar
Ullman, E. et al. Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ.15, 422–425 (2008). ArticleCASPubMed Google Scholar
Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol.6, 1221–1228 (2004). ArticleCASPubMed Google Scholar
Oberstein, A., Jeffrey, P. D. & Shi, Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem.282, 13123–13132 (2007). ArticleCASPubMed Google Scholar
Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell122, 927–939 (2005). This paper presents evidence for the regulation of autophagy by the anti-apoptotic BCL2 family members, establishing convergent regulation of apoptosis and autophagy. ArticleCASPubMed Google Scholar
Tracy, K. & Macleod, K. F. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy3, 616–619 (2007). ArticleCASPubMed Google Scholar
Rashmi, R., Pillai, S. G., Vijayalingam, S., Ryerse, J. & Chinnadurai, G. BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene27, 1366–1375 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Khwaja, A. & Tatton, L. Resistance to the cytotoxic effects of tumor necrosis factor α can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J. Biol. Chem.274, 36817–36823 (1999). ArticleCASPubMed Google Scholar
Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med.187, 1477–1485 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vercammen, D. et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med.188, 919–930 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chan, F. K. et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem.278, 51613–51621 (2003). ArticleCASPubMed Google Scholar
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol.1, 112–119 (2005). This paper describes a first-in-class potent and selective inhibitor of necroptosis. ArticleCAS Google Scholar
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol.1, 489–495 (2000). In this paper, the crucial role of RIP1 kinase activity in the activation of necroptosis is first demonstrated. ArticleCAS Google Scholar
Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol.143, 1353–1360 (1998). This paper is one of the initial reports showing induction of necrotic death by death-domain receptor signals. ArticleCASPubMedPubMed Central Google Scholar
Festjens, N., Vanden Berghe, T. & Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta1757, 1371–1387 (2006). This paper provides an in-depth analysis of the signalling and execution pathways of regulated necrosis. ArticleCASPubMed Google Scholar
Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell Biol.26, 3505–3513 (2006). This paper shows that apoptotic and necroptotic signalling pathways diverge at the level of the death-domain receptor. ArticleCASPubMedPubMed Central Google Scholar
Wang, K. et al. Structure-activity relationship analysis of a novel necroptosis inhibitor, Necrostatin-5. Bioorg. Med. Chem. Lett.17, 1455–1465 (2007). ArticleCASPubMed Google Scholar
Jagtap, P. G. et al. Structure-activity relationship study of tricyclic necroptosis inhibitors. J. Med. Chem.50, 1886–1895 (2007). ArticleCASPubMed Google Scholar
Teng, X. et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett.15, 5039–5044 (2005). ArticleCASPubMed Google Scholar
Temkin, V., Huang, Q., Liu, H., Osada, H. & Pope, R. M. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol. Cell Biol.26, 2215–2225 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lim, S. Y., Davidson, S. M., Mocanu, M. M., Yellon, D. M. & Smith, C. C. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc. Drugs Ther.21, 467–469 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jagtap, P. & Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov.4, 421–440 (2005). ArticleCAS Google Scholar
Oei, S. L., Keil, C. & Ziegler, M. Poly(ADP-ribosylation) and genomic stability. Biochem. Cell Biol.83, 263–269 (2005). ArticleCASPubMed Google Scholar
Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. & Thompson, C. B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev.18, 1272–1282 (2004). This paper establishes the existence of the 'death by energy collapse' mechanism of PARP-1-mediated cell death. ArticleCASPubMedPubMed Central Google Scholar
Ditsworth, D., Zong, W. X. & Thompson, C. B. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J. Biol. Chem.282, 17845–17854 (2007). ArticleCASPubMed Google Scholar
Yu, S. W. et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl Acad. Sci. USA103, 18314–18319 (2006). This paper describes the mechanism of the PARP1–AIF cell death. ArticleCASPubMedPubMed Central Google Scholar
Xu, Y., Huang, S., Liu, Z. G. & Han, J. Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem.281, 8788–8795 (2006). ArticleCASPubMed Google Scholar
Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell44, 817–829 (1986). ArticleCASPubMed Google Scholar
Aballay, A. & Ausubel, F. M. Programmed cell death mediated by _ced_-3 and _ced_-4 protects Caenorhabditis elegans from _Salmonella typhimurium_-mediated killing. Proc. Natl Acad. Sci. USA98, 2735–2739 (2001). ArticleCASPubMedPubMed Central Google Scholar
Martinon, F., Gaide, O., Petrilli, V., Mayor, A. & Tschopp, J. NALP inflammasomes: a central role in innate immunity. Semin. Immunopathol.29, 213–229 (2007). This paper provides an extensive review of the mechanism of action and regulation of mammalian inflammasomes. ArticleCASPubMed Google Scholar
Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol.26, 447–454 (2005). ArticleCASPubMed Google Scholar
Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol.6, 183–195 (2006). ArticleCAS Google Scholar
Srinivasula, S. M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem.277, 21119–21122 (2002). ArticleCASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426 (2002). This paper provides an initial report demonstrating the existance of the caspase-1 activating inflammasome complex. ArticleCASPubMed Google Scholar
Bruey, J. M. et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell129, 45–56 (2007). This paper presents evidence that inflammasome activity is inhibited by BCL2 family members. ArticleCASPubMed Google Scholar
Petrilli, V., Dostert, C., Muruve, D. A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol.19, 615–622 (2007). ArticleCASPubMed Google Scholar
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23, 479–490 (2005). ArticleCASPubMed Google Scholar
Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell25, 713–724 (2007). ArticleCASPubMed Google Scholar
Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in _salmonella_-infected macrophages. Nature Immunol.7, 576–582 (2006). ArticleCAS Google Scholar
Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol.7, 569–575 (2006). References 93 and 94 establish that IPAF inflammasomes can sense intracellular PAMP signals. ArticleCAS Google Scholar
Shen, Q. H. et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science315, 1098–1103 (2007). ArticleCASPubMed Google Scholar
Schmid, D. & Munz, C. Innate and adaptive immunity through autophagy. Immunity27, 11–21 (2007). Reference 98 provides a detailed overview of the role of autophagy in the immune regulation. ArticleCASPubMedPubMed Central Google Scholar
Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol.72, 8586–8596 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science306, 1037–1040 (2004). This paper presents evidence that the activation of autophagy can serve a host defence function. ArticleCASPubMed Google Scholar
Py, B. F., Lipinski, M. M. & Yuan, J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy3, 117–125 (2007). ArticleCASPubMed Google Scholar
Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature450, 1253–1257 (2007). ArticleCASPubMed Google Scholar
Inbal, B., Bialik, S., Sabanay, I., Shani, G. & Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol.157, 455–468 (2002). ArticleCASPubMedPubMed Central Google Scholar
Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci.30, 151–159 (2005). A detailed review that discusses the structure and function of the RIP kinase family. ArticleCASPubMed Google Scholar
Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A. & Kelliher, M. A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem.280, 36560–36566 (2005). ArticleCASPubMed Google Scholar
Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nature Immunol.5, 503–507 (2004). ArticleCAS Google Scholar
Balachandran, S., Thomas, E. & Barber, G. N. A FADD-dependent innate immune mechanism in mammalian cells. Nature432, 401–405 (2004). ArticleCASPubMed Google Scholar
Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell1, 503–514 (2001). ArticleCASPubMed Google Scholar
Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell12, 445–456 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vanden Berghe, T. et al. Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal18, 328–335 (2006). ArticleCASPubMed Google Scholar
Korkina, O. & Degterev, A. in Wiley Encyclopedia of Chemical Biology (ed. Begley, T. P.) (John Wiley and Sons, Ltd, 2008). Google Scholar
Shimizu, S., Konishi, A., Kodama, T. & Tsujimoto, Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA97, 3100–3105 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cheng, E. H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science278, 1966–1968 (1997). ArticleCASPubMed Google Scholar
Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell9, 423–432 (2002). This is the first paper to provide structural insight into the functioning of the apoptosome. ArticleCASPubMed Google Scholar
Park, H. H. et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell128, 533–546 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mizushima, N. Autophagy: process and function. Genes Dev.21, 2861–2873 (2007). This is an in-depth review that describes recent progress in understanding autophagic regulation. ArticleCASPubMed Google Scholar
Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science304, 1500–1502 (2004). This paper demonstrates activation of autophagic cell death resulting from caspase inhibition. ArticleCASPubMed Google Scholar
Kim, Y. S., Morgan, M. J., Choksi, S. & Liu, Z. G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell26, 675–687 (2007). ArticleCASPubMed Google Scholar
Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem.267, 5317–5323 (1992). ArticleCASPubMed Google Scholar
Festjens, N. et al. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ.13, 166–169 (2006). ArticleCASPubMed Google Scholar
Thon, L. et al. Ceramide mediates caspase-independent programmed cell death. FASEB. J.19, 1945–1956 (2005). ArticleCASPubMed Google Scholar
Ame, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays26, 882–893 (2004). This is a detailed review of the structure and function of PARP family members. ArticleCASPubMed Google Scholar
Vahsen, N. et al. AIF deficiency compromises oxidative phosphorylation. EMBO J.23, 4679–4689 (2004). In this report, the metabolic function of AIF in the regulating activity of mitochondrial complex I is established. ArticleCASPubMedPubMed Central Google Scholar
Matsui, Y. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res.100, 914–922 (2007). ArticleCASPubMed Google Scholar
Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest.117, 326–336 (2007). This paper demonstrates that the induction of autophagy in cancer cellsin vivoenhances tumour growth through the inhibition of apoptosis. ArticleCASPubMedPubMed Central Google Scholar
Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell4, 422–424 (2003). ArticleCASPubMed Google Scholar
Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell10, 51–64 (2006). This paper demonstrates the plasticity of cancer cell death activation under hypoxic conditions by demonstrating the activation of apoptosis, autophagy and necrosis that is dependent on the expression of specific protein factors in the cell. ArticleCASPubMedPubMed Central Google Scholar
Smith, C. C. et al. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc. Drugs Ther.21, 227–233 (2007). ArticleCASPubMed Google Scholar
de la Lastra, C. A., Villegas, I. & Sanchez-Fidalgo, S. Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr. Pharm. Des.13, 933–962 (2007). ArticlePubMed Google Scholar
Horvath, E. M. & Szabo, C. Poly(ADP-ribose) polymerase as a drug target for cardiovascular disease and cancer: an update. Drug News Perspect.20, 171–181 (2007). ArticleCASPubMed Google Scholar
Kauppinen, T. M. & Swanson, R. A. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience145, 1267–1272 (2007). ArticleCASPubMed Google Scholar
Zaremba, T. & Curtin, N. J. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem.7, 515–523 (2007). ArticleCASPubMed Google Scholar
Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ.14, 10–22 (2007). ArticleCASPubMed Google Scholar
Muppidi, J. R., Tschopp, J. & Siegel, R. M. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity21, 461–465 (2004). ArticleCASPubMed Google Scholar
O'Donnell, M. A., Legarda-Addison, D., Skountzos, P., Yeh, W. C. & Ting, A. T. Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr. Biol.17, 418–424 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hong, Q. et al. Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response. BMC Mol. Biol.8, 50 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Takahashi, R. et al. Focal adhesion kinase determines the fate of death or survival of cells in response to TNFα in the presence of actinomycin D. Biochim. Biophys. Acta1770, 518–526 (2007). ArticleCASPubMed Google Scholar
Leist, M. et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp. Cell Res.249, 396–403 (1999). ArticleCASPubMed Google Scholar
Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med.185, 1481–1486 (1997). This paper introduces the idea that intrinsic differences in cellular energy levels might have a key role in the selection of a cell's form of death: either apoptotic or necrotic. ArticleCASPubMedPubMed Central Google Scholar
Volbracht, C., Leist, M. & Nicotera, P. ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol. Med.5, 477–489 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nicotera, P., Leist, M., Fava, E., Berliocchi, L. & Volbracht, C. Energy requirement for caspase activation and neuronal cell death. Brain Pathol.10, 276–282 (2000). ArticleCASPubMed Google Scholar
Dimmeler, S., Haendeler, J., Sause, A. & Zeiher, A. M. Nitric oxide inhibits APO-1/Fas-mediated cell death. Cell Growth Differ.9, 415–422 (1998). CASPubMed Google Scholar