Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal (original) (raw)
Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447, 425–432 (2007). CASPubMed Google Scholar
Sasaki, H. & Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nature Rev. Genet.9, 129–140 (2008). CASPubMed Google Scholar
Dean, W., Santos, F. & Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol.14, 93–100 (2003). CASPubMed Google Scholar
Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell128, 747–762 (2007). CASPubMed Google Scholar
Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10, 475–478 (2000). CASPubMed Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–502 (2000). CASPubMed Google Scholar
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241, 172–182 (2002). A detailed analysis of the DNA methylation dynamics in pre-implantation mouse development. CASPubMed Google Scholar
Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104, 829–838 (2001). CASPubMed Google Scholar
Kwon, G. S., Viotti, M. & Hadjantonakis, A. K. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell15, 509–520 (2008). CASPubMedPubMed Central Google Scholar
Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development132, 1315–1325 (2005). CASPubMed Google Scholar
Hayashi, K., de Sousa Lopes, S. M. & Surani, M. A. Germ cell specification in mice. Science316, 394–396 (2007). CASPubMed Google Scholar
Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature418, 293–300 (2002). CASPubMed Google Scholar
Yamazaki, Y. et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl Acad. Sci. USA100, 12207–12212 (2003). CASPubMedPubMed Central Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). CASPubMed Google Scholar
Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature452, 877–881 (2008). A comprehensive study of the dynamic changes of a range of epigenetic modifications during germ cell development. CASPubMed Google Scholar
Seki, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development134, 2627–2638 (2007). CASPubMed Google Scholar
Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol.278, 440–458 (2005). CASPubMed Google Scholar
Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev.117, 15–23 (2002). CASPubMed Google Scholar
Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol.8, 623–630 (2006). CASPubMed Google Scholar
Morgan, H. D., Dean, W., Coker, H. A., Reik, W. & Petersen-Mahrt, S. K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem.279, 52353–52360 (2004). CAS Google Scholar
Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445, 671–675 (2007). CASPubMed Google Scholar
Gehring, M., Reik, W. & Henikoff, S. DNA demethylation by DNA repair. Trends Genet.25, 82–90 (2009). CASPubMed Google Scholar
Huh, J. H., Bauer, M. J., Hsieh, T. F. & Fischer, R. L. Cellular programming of plant gene imprinting. Cell132, 735–744 (2008). CASPubMed Google Scholar
Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell135, 1201–1212 (2008). CASPubMedPubMed Central Google Scholar
Govin, J. et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J. Cell Biol.176, 283–294 (2007). CASPubMedPubMed Central Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). CASPubMedPubMed Central Google Scholar
Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). CASPubMed Google Scholar
Santos, F., Peters, A. H., Otte, A. P., Reik, W. & Dean, W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol.280, 225–236 (2005). CASPubMed Google Scholar
van der Heijden, G. W. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev.122, 1008–1022 (2005). CASPubMed Google Scholar
Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nature Genet.40, 411–420 (2008). CASPubMed Google Scholar
Probst, A. V., Santos, F., Reik, W., Almouzni, G. & Dean, W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma116, 403–415 (2007). PubMed Google Scholar
Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development99, 371–382 (1987). CASPubMed Google Scholar
Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev.12, 2108–2113 (1998). CASPubMedPubMed Central Google Scholar
Howlett, S. K. & Reik, W. Methylation levels of maternal and paternal genomes during preimplantation development. Development113, 119–127 (1991). CASPubMed Google Scholar
Edwards, C. A. & Ferguson-Smith, A. C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol.19, 281–289 (2007). CASPubMed Google Scholar
Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis35, 88–93 (2003). CASPubMed Google Scholar
Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature307, 284–286 (1984). CASPubMed Google Scholar
Rossant, J., Sanford, J. P., Chapman, V. M. & Andrews, G. K. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev. Biol.117, 567–573 (1986). CASPubMed Google Scholar
Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet.4, e1000116 (2008). PubMedPubMed Central Google Scholar
Tanaka, T. S. et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res.12, 1921–1928 (2002). CASPubMedPubMed Central Google Scholar
Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14, R47–R58 (2005). CASPubMed Google Scholar
Erhardt, S. et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development130, 4235–4248 (2003). CASPubMed Google Scholar
Sarmento, O. F. et al. Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci.117, 4449–4459 (2004). CASPubMed Google Scholar
Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell70, 841–847 (1992). CASPubMed Google Scholar
Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature359, 550–551 (1992). CASPubMed Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). Pioneering work that describes the first derivation of pluripotent, self-renewing embryonic stem cells in mice. CASPubMed Google Scholar
Tesar, P. J. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc. Natl Acad. Sci. USA102, 8239–8244 (2005). CASPubMedPubMed Central Google Scholar
Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448, 191–195 (2007). CASPubMed Google Scholar
Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448, 196–199 (2007). References 48 and 49 identify a pluripotent cell population in the post-implantation epiblast that can give rise to self-renewing epiblast stem cells with unique characteristics compared with ES cells. CASPubMed Google Scholar
Durcova-Hills, G., Tang, F., Doody, G., Tooze, R. & Surani, M. A. Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE3, e3531 (2008). PubMedPubMed Central Google Scholar
Niwa, H. How is pluripotency determined and maintained? Development134, 635–646 (2007). CASPubMed Google Scholar
Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet.38, 431–440 (2006). One of the first large-scale chromatin immunoprecipitation screens identifying the transcriptional network established by the pluripotency factors OCT4 and NANOG in mouse ES cells. CASPubMed Google Scholar
Sharov, A. A. et al. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics9, 269 (2008). PubMedPubMed Central Google Scholar
Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biol.8, 1114–1123 (2006). CASPubMed Google Scholar
Wu, Q. et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J. Biol. Chem.281, 24090–24094 (2006). CASPubMed Google Scholar
Lim, C. Y. et al. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell3, 543–554 (2008). CASPubMed Google Scholar
Yang, J. et al. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc. Natl Acad. Sci. USA105, 19756–19761 (2008). CASPubMedPubMed Central Google Scholar
Chew, J. L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol.25, 6031–6046 (2005). CASPubMedPubMed Central Google Scholar
Rodda, D. J. et al. Transcriptional regulation of Nanog by OCT4 and SOX2. J. Biol. Chem.280, 24731–24737 (2005). CASPubMed Google Scholar
Liang, J. et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nature Cell Biol.10, 731–739 (2008). CASPubMed Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). Genome-wide profile of the target genes of PcG proteins that identifies that PcG proteins repress a large cohort of developmental regulators in ES cells, the expression of which would otherwise promote differentiation. CASPubMed Google Scholar
Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell125, 301–313 (2006). CASPubMedPubMed Central Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006). CASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). References 63 and 64 found independently that genes required for later development are in a poised state for activation, which is characterized by bivalent chromatin domains that consist of active (H3K4me3) and repressive (H3K27me3) marks. CASPubMed Google Scholar
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448, 553–560 (2007). CASPubMedPubMed Central Google Scholar
Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell2, 160–169 (2008). CASPubMedPubMed Central Google Scholar
Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454, 766–770 (2008). CASPubMedPubMed Central Google Scholar
Ura, H. et al. STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J. Biol. Chem.283, 9713–9723 (2008). CASPubMed Google Scholar
Loh, Y. H., Zhang, W., Chen, X., George, J. & Ng, H. H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev.21, 2545–2557 (2007). CASPubMedPubMed Central Google Scholar
Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biol.8, 188–194 (2006). CASPubMed Google Scholar
Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol.15, 1176–1183 (2008). CAS Google Scholar
Hattori, N. et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells12, 387–396 (2007). CASPubMed Google Scholar
Li, J. Y. et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell. Biol.27, 8748–8759 (2007). CASPubMedPubMed Central Google Scholar
Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development134, 4219–4231 (2007). A detailed investigation of the expression of lineage-determining transcription factors in the early mouse embryo that shows the stochasticity of their expression until the mid-to-late blastocyst stage. CASPubMed Google Scholar
Ralston, A. & Rossant, J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol.313, 614–629 (2008). CASPubMed Google Scholar
Jedrusik, A. et al. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev.22, 2692–2706 (2008). CASPubMedPubMed Central Google Scholar
Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell3, 391–401 (2008). ES cells fluctuate in their expression of developmental key genes, such asStella, and these STELLA-positive and STELLA-negative subpopulations, although epigenetically and functionally distinct, are interconvertible. CASPubMed Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230–1234 (2007). CASPubMed Google Scholar
Cui, L. et al. Spatial distribution and initial changes of SSEA-1 and other cell adhesion-related molecules on mouse embryonic stem cells before and during differentiation. J. Histochem. Cytochem.52, 1447–1457 (2004). CASPubMedPubMed Central Google Scholar
Furusawa, T., Ohkoshi, K., Honda, C., Takahashi, S. & Tokunaga, T. Embryonic stem cells expressing both platelet endothelial cell adhesion molecule-1 and stage-specific embryonic antigen-1 differentiate predominantly into epiblast cells in a chimeric embryo. Biol. Reprod.70, 1452–1457 (2004). CASPubMed Google Scholar
Payer, B. et al. Generation of stella–GFP transgenic mice: a novel tool to study germ cell development. Genesis44, 75–83 (2006). CASPubMed Google Scholar
Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development135, 909–918 (2008). CASPubMed Google Scholar
Zernicka-Goetz, M. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice. Curr. Opin. Genet. Dev.16, 406–412 (2006). CASPubMed Google Scholar
Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development136, 701–713 (2009). CASPubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000). CASPubMed Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). CASPubMed Google Scholar
Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell123, 917–929 (2005). An important concept in the cell lineage specification process is the mutual inhibitory interaction of transcription factors with opposing functions. CASPubMed Google Scholar
Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev.125, 270–283 (2008). CASPubMed Google Scholar
Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development134, 3827–3836 (2007). CASPubMed Google Scholar
Donnison, M. et al. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development132, 2299–2308 (2005). CASPubMed Google Scholar
Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nature Cell Biol.10, 1280–1290 (2008). DNA methylation establishes a major epigenetic restriction of cell lineage fate by regulating the trophoblast-reinforcing gatekeeper geneElf5 . CASPubMed Google Scholar
Dodge, J. E., Kang, Y. K., Beppu, H., Lei, H. & Li, E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol.24, 2478–2486 (2004). CASPubMedPubMed Central Google Scholar
O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol.21, 4330–4336 (2001). CASPubMedPubMed Central Google Scholar
Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature445, 214–218 (2007). CASPubMedPubMed Central Google Scholar
Yamanaka, Y., Ralston, A., Stephenson, R. O. & Rossant, J. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn.235, 2301–2314 (2006). CASPubMed Google Scholar
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell16, 398–410 (2009). CASPubMed Google Scholar
Hirasawa, R. & Sasaki, H. Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expr. Patterns9, 27–30 (2009). CASPubMed Google Scholar
Watanabe, D., Suetake, I., Tada, T. & Tajima, S. Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech. Dev.118, 187–190 (2002). CASPubMed Google Scholar
Waddington, C. H. Organisers and Genes (Cambridge Univ. Press, Cambridge, UK, 1940). Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). The first groundbreaking report of the derivation of ES cell-like iPS cells from terminally differentiated adult fibroblasts. CASPubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). CASPubMed Google Scholar
Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol.25, 1177–1181 (2007). CAS Google Scholar
Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322, 949–953 (2008). CASPubMed Google Scholar
Feng, B. et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biol.11, 197–203 (2009). CASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). CASPubMed Google Scholar
Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature454, 49–55 (2008). CASPubMedPubMed Central Google Scholar
Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell2, 525–528 (2008). CASPubMed Google Scholar
Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol.26, 795–797 (2008). CAS Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). Gene expression noise causes fluctuations in protein levels that produce persistent cell individuality in clonal populations. This stochasticity can drive lineage specification. CASPubMedPubMed Central Google Scholar
MacArthur, B. D., Please, C. P. & Oreffo, R. O. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS ONE3, e3086 (2008). Computational modelling of how the positive interference of stochastic gene expression levels can lead to lineage choice and enables reprogramming to iPS cells. PubMedPubMed Central Google Scholar
Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell136, 461–472 (2009). CASPubMedPubMed Central Google Scholar
Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genet.41, 125–129 (2009). CASPubMed Google Scholar
Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venkitaraman, A. R. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature453, 682–686 (2008). CASPubMed Google Scholar
Chin, H. G. et al. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res.35, 7313–7323 (2007). CASPubMedPubMed Central Google Scholar
Wei, F., Scholer, H. R. & Atchison, M. L. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem.282, 21551–21560 (2007). CASPubMed Google Scholar
Cardoso, M. C. & Leonhardt, H. DNA methyltransferase is actively retained in the cytoplasm during early development. J. Cell Biol.147, 25–32 (1999). CASPubMedPubMed Central Google Scholar
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science282, 2072–2075 (1998). The successful derivation and maintenance of stem cells of the trophoblast lineage that retain the established lineage restriction and contribute exclusively to placental structures in chimeras. CASPubMed Google Scholar
Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development132, 1649–1661 (2005). CASPubMed Google Scholar
Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development122, 881–894 (1996). CASPubMed Google Scholar
Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17, 126–140 (2003). CASPubMedPubMed Central Google Scholar
Elling, U., Klasen, C., Eisenberger, T., Anlag, K. & Treier, M. Murine inner cell mass-derived lineages depend on Sall4 function. Proc. Natl Acad. Sci. USA103, 16319–16324 (2006). CASPubMedPubMed Central Google Scholar
Payer, B. et al. Stella is a maternal effect gene required for normal early development in mice. Curr. Biol.13, 2110–2117 (2003). CASPubMed Google Scholar
Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development132, 2093–2102 (2005). CASPubMed Google Scholar
McConnell, J., Petrie, L., Stennard, F., Ryan, K. & Nichols, J. Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol. Reprod. Dev.71, 399–404 (2005). CASPubMed Google Scholar
Uy, G. D., Downs, K. M. & Gardner, R. L. Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development129, 3913–3924 (2002). CASPubMed Google Scholar