- Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).
CAS PubMed Google Scholar
- DeWard, A. D. & Alberts, A. S. Microtubule stabilization: formins assert their independence. Curr. Biol. 18, 605–608 (2008).
Google Scholar
- Chesarone, M. A. & Goode, B. L. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28–37 (2009).
CAS PubMed PubMed Central Google Scholar
- Zuchero, J. B., Coutts, A. S., Quinlan, M. E., Thangue, N. B. & Mullins, R. D. p53-cofactor JMY is a multifunctional actin nucleation factor. Nature Cell Biol. 11, 451–459 (2009).
CAS PubMed Google Scholar
- Higgs, H. N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342–353 (2005).
CAS PubMed Google Scholar
- Grunt, M., Zarsky, V. & Cvrckova, F. Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol. 8, 115 (2008).
PubMed PubMed Central Google Scholar
- Chalkia, D., Nikolaidis, N., Makalowski, W., Klein, J. & Nei, M. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol. Biol. Evol. 25, 2717–2733 (2008).
CAS PubMed PubMed Central Google Scholar
- Perelroizen, I., Marchand, J. B., Blanchoin, L., Didry, D. & Carlier, M. F. Interaction of profilin with G-actin and poly(L-proline). Biochemistry 33, 8472–8478 (1994).
CAS PubMed Google Scholar
- Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. & Lindberg, U. The structure of crystalline profilin-β-actin. Nature 365, 810–816 (1993).
CAS PubMed Google Scholar
- Kursula, P. et al. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP. J. Mol. Biol. 375, 270–290 (2008).
CAS PubMed Google Scholar
- Kaiser, D. A., Vinson, V. K., Murphy, D. B. & Pollard, T. D. Profilin is predominantly associated with monomeric actin in Acanthamoeba. J. Cell Sci. 112, 3779–3790 (1999).
CAS PubMed Google Scholar
- Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).
CAS PubMed PubMed Central Google Scholar
- Yonetani, A. et al. Regulation and targeting of the fission yeast formin Cdc12p in cytokinesis. Mol. Biol. Cell 19, 2208–2219 (2008).
CAS PubMed PubMed Central Google Scholar
- Sagot, I., Rodal, A. A., Moseley, J., Goode, B. L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002). Together with reference 46, this study was the first to show that formins directly nucleate actin polymerization, and that formin interactions with profilin–actin complexes further stimulate actin assembly.
CAS PubMed Google Scholar
- Paul, A. S. & Pollard, T. D. Energetic requirements for processive elongation of actin filaments by FH1FH2-formins. J. Biol. Chem. 284, 12533–12540 (2009).
CAS PubMed PubMed Central Google Scholar
- Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).
CAS PubMed Google Scholar
- Lewkowicz, E. et al. The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. J. Cell Biol. 183, 1287–1298 (2008).
CAS PubMed PubMed Central Google Scholar
- Bartolini, F. et al. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol. 181, 523–536 (2008). This study was the first to show that formin effects on microtubules, both in vitro and in vivo , can be genetically uncoupled from their effects on actin assembly.
CAS PubMed PubMed Central Google Scholar
- Higgs, H. N. & Peterson, K. J. Phylogenetic analysis of the formin homology 2 domain. Mol. Biol. Cell 16, 1–13 (2005).
CAS PubMed PubMed Central Google Scholar
- Rose, R. et al. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435, 513–518 (2005).
CAS PubMed Google Scholar
- Otomo, T., Otomo, C., Tomchick, D. R., Machius, M. & Rosen, M. K. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol. Cell 18, 273–281 (2005).
CAS PubMed Google Scholar
- Nezami, A. G., Poy, F. & Eck, M. J. Structure of the autoinhibitory switch in formin mDia1. Structure 14, 257–263 (2006).
CAS PubMed Google Scholar
- Lammers, M., Meyer, S., Kuhlmann, D. & Wittinghofer, A. Specificity of interactions between mDia isoforms and Rho proteins. J. Biol. Chem. 283, 35236–35246 (2008).
CAS PubMed PubMed Central Google Scholar
- Schonichen, A. et al. Biochemical characterization of the diaphanous autoregulatory interaction in the formin homology protein FHOD1. J. Biol. Chem. 281, 5084–5093 (2006).
PubMed Google Scholar
- Wallar, B. J. et al. The basic region of the diaphanous-autoregulatory domain (DAD) is required for autoregulatory interactions with the diaphanous-related formin inhibitory domain. J. Biol. Chem. 281, 4300–4307 (2006).
CAS PubMed Google Scholar
- Li, F. & Higgs, H. N. The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003). The characterization of mDia1 that provided the first biochemical demonstration of formin autoinhibition through interactions between the N- and C-terminal halves of the protein.
CAS PubMed Google Scholar
- Liu, W. et al. Mechanism of activation of the Formin protein Daam1. Proc. Natl Acad. Sci. USA 105, 210–215 (2008).
CAS PubMed Google Scholar
- Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).
CAS PubMed Google Scholar
- Kitzing, T. M. et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev. 21, 1478–1483 (2007).
CAS PubMed PubMed Central Google Scholar
- Miyagi, Y. et al. Delphilin: a novel PDZ and formin homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor δ2 subunit. J. Neurosci. 22, 803–814 (2002).
CAS PubMed PubMed Central Google Scholar
- Matsuda, K., Matsuda, S., Gladding, C. M. & Yuzaki, M. Characterization of the δ2 glutamate receptor-binding protein delphilin: splicing variants with differential palmitoylation and an additional PDZ domain. J. Biol. Chem. 281, 25577–25587 (2006).
CAS PubMed Google Scholar
- Deeks, M. J. et al. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol. 168, 529–540 (2005).
CAS PubMed Google Scholar
- Pring, M., Evangelista, M., Boone, C., Yang, C. & Zigmond, S. H. Mechanism of formin-induced nucleation of actin filaments. Biochemistry 42, 486–496 (2003).
CAS PubMed Google Scholar
- Moseley, J. B. et al. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15, 896–907 (2004). Characterization of yeast Bni1 and mouse Dia1 formins, showing that formins have a conserved function in protecting the growing barbed ends of actin filaments from capping proteins, that the FH2 domain must dimerize to be active and that Bud6 binds directly to Bni1 to stimulate its actin assembly activity.
CAS PubMed PubMed Central Google Scholar
- Xu, Y. et al. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116, 711–723 (2004). This study provided the first crystal structure of an active formin molecule, revealing that the FH2 is a flexibly tethered dimer, which led to the 'stair-stepping' model for processive motion of the FH2 on growing barbed ends of actin filaments.
CAS PubMed Google Scholar
- Otomo, T. et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005).
CAS PubMed Google Scholar
- Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).
CAS PubMed PubMed Central Google Scholar
- Higashida, C. et al. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers. J. Cell Sci. 121, 3403–3412 (2008).
CAS PubMed Google Scholar
- Takeya, R., Taniguchi, K., Narumiya, S. & Sumimoto, H. The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J. 27, 618–628 (2008). Using complementary in vitro and in vivo approaches, this study showed that phosphorylation of the formin FHOD1 by ROCK disrupts FHOD1 autoinhibition independently of Rho binding and stimulates stress fibre formation.
CAS PubMed PubMed Central Google Scholar
- Hannemann, S. et al. The Diaphanous-related formin FHOD1 associates with ROCK1 and promotes Src-dependent plasma membrane blebbing. J. Biol. Chem. 283, 27891–27903 (2008).
CAS PubMed Google Scholar
- Moseley, J. B. & Goode, B. L. Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6. J. Biol. Chem. 280, 28023–28033 (2005).
CAS PubMed Google Scholar
- Martin, S. G., Rincon, S. A., Basu, R., Perez, P. & Chang, F. Regulation of the formin for3p by cdc42p and bud6p. Mol. Biol. Cell 18, 4155–4167 (2007).
CAS PubMed PubMed Central Google Scholar
- Pechlivanis, M., Samol, A. & Kerkhoff, E. Identification of a short Spir interaction sequence at the C-terminal end of formin subgroup proteins. J. Biol. Chem. 284, 25324–25333 (2009).
CAS PubMed PubMed Central Google Scholar
- Dahlgaard, K., Raposo, A. A., Niccoli, T. & St. Johnston, D. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev. Cell 13, 539–553 (2007).
CAS PubMed PubMed Central Google Scholar
- Quinlan, M. E., Hilgert, S., Bedrossian, A., Mullins, R. D. & Kerkhoff, E. Regulatory interactions between two actin nucleators, Spire and Cappuccino. J. Cell Biol. 179, 117–128 (2007).
CAS PubMed PubMed Central Google Scholar
- Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002). Together with reference 14, this study was the first to show that formins directly nucleate actin polymerization, and showed unexpectedly that formins physically associate with the dynamic barbed ends of actin filaments.
CAS PubMed Google Scholar
- Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).
CAS PubMed Google Scholar
- Kovar, D. R. & Pollard, T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl Acad. Sci. USA 101, 14725–14730 (2004). This study used TIRF microscopy to visualize in real time polymerizing actin filaments associated with formins at their barbed ends, and found that formins remain persistently attached to the barbed ends while allowing the insertional assembly of new subunits.
CAS PubMed PubMed Central Google Scholar
- Higashida, C. et al. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303, 2007–2010 (2004). This study used live-cell imaging to track the movements of mDia1–GFP fusion proteins in cultured cells, which revealed rapid and persistent, actin-dependent movements on linear tracks, providing the first in vivo evidence for formins moving processively on growing barbed ends.
CAS PubMed Google Scholar
- Vidali, L. et al. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl Acad. Sci. USA 106, 13341–13346 (2009).
CAS PubMed PubMed Central Google Scholar
- Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).
CAS PubMed PubMed Central Google Scholar
- Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004). This study was the first to report that formins can accelerate elongation at barbed ends, a conclusion that was reached by comparing the lengths of actin filaments assembled in the presence and absence of formins.
CAS PubMed Google Scholar
- Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N. & Pollard, T. D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006). This study used TIRF microscopy to show that formins markedly accelerate barbed end elongation through physical interactions between their FH1 domains and profilin–actin complexes, and that different formins support different elongation rates.
CAS PubMed Google Scholar
- Vavylonis, D., Kovar, D. R., O'Shaughnessy, B. & Pollard, T. D. Model of formin-associated actin filament elongation. Mol. Cell 21, 455–466 (2006).
CAS PubMed PubMed Central Google Scholar
- Neidt, E. M., Scott, B. J. & Kovar, D. R. Formin differentially utilizes profilin isoforms to rapidly assemble actin filaments. J. Biol. Chem. 284, 673–684 (2009).
CAS PubMed Google Scholar
- Harris, E. S., Rouiller, I., Hanein, D. & Higgs, H. N. Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J. Biol. Chem. 281, 14383–14392 (2006).
CAS PubMed Google Scholar
- Michelot, A. et al. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17, 2296–2313 (2005).
CAS PubMed PubMed Central Google Scholar
- Vaillant, D. C. et al. Interaction of the N- and C-terminal autoregulatory domains of FRL2 does not inhibit FRL2 activity. J. Biol. Chem. 283, 33750–33762 (2008).
CAS PubMed PubMed Central Google Scholar
- Harris, E. S., Li, F. & Higgs, H. N. The mouse formin, FRLα, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J. Biol. Chem. 279, 20076–20087 (2004).
CAS PubMed Google Scholar
- Chhabra, E. S. & Higgs, H. N. INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem. 281, 26754–26767 (2006).
CAS PubMed Google Scholar
- Yi, K. et al. Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol. 138, 1071–1082 (2005).
CAS PubMed PubMed Central Google Scholar
- Waterman-Storer, C. M. & Salmon, E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67 (1999).
CAS PubMed Google Scholar
- Goode, B. L., Drubin, D. G. & Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63–71 (2000).
CAS PubMed Google Scholar
- Lin, S. X., Gundersen, G. G. & Maxfield, F. R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 13, 96–109 (2002).
CAS PubMed PubMed Central Google Scholar
- Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001). This study was the first to show that formins can bind directly to microtubules and regulate microtubule stability in vivo.
CAS PubMed Google Scholar
- Pawson, C., Eaton, B. A. & Davis, G. W. Formin-dependent synaptic growth: evidence that Dlar signals via Diaphanous to modulate synaptic actin and dynamic pioneer microtubules. J. Neurosci. 28, 11111–11123 (2008).
CAS PubMed PubMed Central Google Scholar
- Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).
CAS PubMed PubMed Central Google Scholar
- Delgehyr, N., Lopes, C. S., Moir, C. A., Huisman, S. M. & Segal, M. Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. J. Cell Sci. 121, 3803–3814 (2008).
CAS PubMed Google Scholar
- Yasuda, S. et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771 (2004).
CAS PubMed Google Scholar
- Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998).
CAS PubMed PubMed Central Google Scholar
- Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).
CAS PubMed Google Scholar
- Beach, D. L., Thibodeaux, J., Maddox, P., Yeh, E. & Bloom, K. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr. Biol. 10, 1497–1506 (2000).
CAS PubMed Google Scholar
- Sider, J. R. et al. Direct observation of microtubule-F-actin interaction in cell free lysates. J. Cell Sci. 112, 1947–1956 (1999).
CAS PubMed Google Scholar
- Young, K. G., Thurston, S. F., Copeland, S., Smallwood, C. & Copeland, J. W. INF1 is a novel microtubule-associated formin. Mol. Biol. Cell 19, 5168–5180 (2008).
CAS PubMed PubMed Central Google Scholar
- Rosales-Nieves, A. E. et al. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nature Cell Biol. 8, 367–376 (2006).
CAS PubMed Google Scholar
- Zhou, F., Leder, P. & Martin, S. S. Formin-1 protein associates with microtubules through a peptide domain encoded by exon-2. Exp. Cell Res. 312, 1119–1126 (2006).
CAS PubMed Google Scholar
- Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).
CAS PubMed Google Scholar
- Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).
CAS PubMed Google Scholar
- Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002). Together with reference 77, this paper showed that the FH2 domain has a crucial role in actin assembly in vivo , setting the stage for the biochemical studies on formin activities that followed.
CAS PubMed Google Scholar
- Sarmiento, C. et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180, 1245–1260 (2008).
CAS PubMed PubMed Central Google Scholar
- Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).
CAS PubMed Google Scholar
- Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001). This study provided the first detailed evidence for autoinhibition by formins and defined the autoregulatory function of the DAD.
CAS PubMed Google Scholar
- Li, F. & Higgs, H. N. Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDia1. J. Biol. Chem. 280, 6986–6992 (2005).
CAS PubMed Google Scholar
- Seth, A., Otomo, C. & Rosen, M. K. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLα and mDia1. J. Cell Biol. 174, 701–713 (2006). This study showed that autoinhibitory interactions between the N- and C-terminal halves of the formins FMNL1 and mDia1 regulate their localization to the cell cortex, and that Rho proteins, along with other unidentified factors, facilitate formin cortical recruitment.
CAS PubMed PubMed Central Google Scholar
- Lu, J. et al. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J. Mol. Biol. 369, 1258–1269 (2007).
CAS PubMed PubMed Central Google Scholar
- Yamashita, M. et al. Crystal structure of human DAAM1 formin homology 2 domain. Genes Cells 12, 1255–1265 (2007).
CAS PubMed Google Scholar
- Chhabra, E. S., Ramabhadran, V., Gerber, S. A. & Higgs, H. N. INF2 is an endoplasmic reticulum-associated formin protein. J. Cell Sci. 122, 1430–1440 (2009).
CAS PubMed PubMed Central Google Scholar
- Eisenmann, K. M. et al. Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr. Biol. 17, 579–591 (2007).
CAS PubMed Google Scholar
- Chesarone, M., Gould, C. J., Moseley, J. B. & Goode, B. L. Displacement of formins from growing barbed ends by Bud14 is critical for actin cable architecture and function. Dev. Cell 16, 292–302 (2009).
CAS PubMed PubMed Central Google Scholar
- Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).
CAS Google Scholar
- Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).
CAS PubMed PubMed Central Google Scholar
- Dong, Y., Pruyne, D. & Bretscher, A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cell Biol. 161, 1081–1092 (2003).
CAS PubMed PubMed Central Google Scholar
- Brandt, D. T. et al. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J. Cell Biol. 178, 193–200 (2007).
CAS PubMed PubMed Central Google Scholar
- Wang, J., Neo, S. P. & Cai, M. Regulation of the yeast formin Bni1p by the actin-regulating kinase Prk1p. Traffic 10, 528–535 (2009).
CAS PubMed Google Scholar
- Matheos, D., Metodiev, M., Muller, E., Stone, D. & Rose, M. D. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J. Cell Biol. 165, 99–109 (2004).
CAS PubMed PubMed Central Google Scholar
- Tolliday, N., VerPlank, L. & Li, R. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12, 1864–1870 (2002).
CAS PubMed Google Scholar
- Yoshida, S. et al. Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313, 108–111 (2006).
CAS PubMed Google Scholar
- Das, M. et al. Regulation of cell diameter, For3p localization, and cell symmetry by fission yeast Rho-GAP Rga4p. Mol. Biol. Cell 18, 2090–2101 (2007).
CAS PubMed PubMed Central Google Scholar
- Copeland, S. J. et al. The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2. J. Biol. Chem. 282, 30120–30130 (2007).
CAS PubMed Google Scholar
- Carramusa, L., Ballestrem, C., Zilberman, Y. & Bershadsky, A. D. Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J. Cell Sci. 120, 3870–3882 (2007).
CAS PubMed Google Scholar
- Petersen, J., Nielsen, O., Egel, R. & Hagan, I. M. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J. Cell Biol. 141, 1217–1228 (1998).
CAS PubMed PubMed Central Google Scholar
- Kikyo, M. et al. An FH domain-containing Bnr1p is a multifunctional protein interacting with a variety of cytoskeletal proteins in Saccharomyces cerevisiae. Oncogene 18, 7046–7054 (1999).
CAS PubMed Google Scholar
- Fujiwara, T. et al. Rho1p–Bni1p–Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1221–1233 (1998).
CAS PubMed PubMed Central Google Scholar
- Martin, S. G., McDonald, W. H., Yates, J. R., & Chang, F. Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev. Cell 8, 479–491 (2005).
CAS PubMed Google Scholar
- Ryu, J. R., Echarri, A., Li, R. & Pendergast, A. M. Regulation of cell-cell adhesion by Abi/Diaphanous complexes. Mol. Cell. Biol. 29, 1735–1748 (2009).
CAS PubMed PubMed Central Google Scholar
- Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004).
CAS PubMed Google Scholar
- Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nature Rev. Mol. Cell Biol. 7, 713–726 (2006).
CAS Google Scholar
- Moseley, J. B., Maiti, S. & Goode, B. L. Formin proteins: purification and measurement of effects on actin assembly. Methods Enzymol. 406, 215–234 (2006).
CAS PubMed Google Scholar
- Buttery, S. M., Yoshida, S. & Pellman, D. Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables. Mol. Biol. Cell 18, 1826–1838 (2007).
CAS PubMed PubMed Central Google Scholar
- Martin, S. G. & Chang, F. Dynamics of the formin For3p in actin cable assembly. Curr. Biol. 16, 1161–1170 (2006). Together with reference 109, this study used high resolution live-cell imaging to show that some formins can be transiently recruited from the cytoplasm to the cell cortex, where they assemble actin and are then released from the cortex and incorporated into actin networks, whereas other formins are stably tethered to cortical sites of actin assembly.
CAS PubMed Google Scholar
- Stradal, T. E. & Scita, G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18, 4–10 (2006).
CAS PubMed Google Scholar
- Chan, D. C., Bedford, M. T. & Leder, P. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054 (1996).
CAS PubMed PubMed Central Google Scholar
- Aspenstrom, P., Richnau, N. & Johansson, A. S. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp. Cell Res. 312, 2180–2194 (2006).
PubMed Google Scholar
- Uetz, P., Fumagalli, S., James, D. & Zeller, R. Molecular interaction between limb deformity proteins (formins) and Src family kinases. J. Biol. Chem. 271, 33525–33530 (1996).
CAS PubMed Google Scholar
- Gasman, S., Kalaidzidis, Y. & Zerial, M. RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nature Cell Biol. 5, 195–204 (2003).
CAS PubMed Google Scholar
- Fujiwara, T., Mammoto, A., Kim, Y. & Takai, Y. Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem. Biophys. Res. Commun. 271, 626–629 (2000).
CAS PubMed Google Scholar
- Scita, G., Confalonieri, S., Lappalainen, P. & Suetsugu, S. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol. 18, 52–60 (2008).
CAS PubMed Google Scholar
- Cramer, L. P., Siebert, M. & Mitchison, T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997).
CAS PubMed PubMed Central Google Scholar
- Kamasaki, T., Arai, R., Osumi, M. & Mabuchi, I. Directionality of F-actin cables changes during the fission yeast cell cycle. Nature Cell Biol. 7, 916–917 (2005).
CAS PubMed Google Scholar
- Kamasaki, T., Osumi, M. & Mabuchi, I. Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell Biol. 178, 765–771 (2007).
CAS PubMed PubMed Central Google Scholar
- Yang, H. C., Simon, V., Swayne, T. C. & Pon, L. Visualization of mitochondrial movement in yeast. Methods Cell Biol. 65, 333–351 (2001).
CAS PubMed Google Scholar
- Skau, C. T., Neidt, E. M. & Kovar, D. R. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol. Biol. Cell 20, 2160–2173 (2009).
CAS PubMed PubMed Central Google Scholar
- Deward, A. D. & Alberts, A. S. Ubiquitin-mediated degradation of the formin mDia2 upon completion of cell division. J. Biol. Chem. 284, 20061–20069 (2009).
CAS PubMed PubMed Central Google Scholar
- Favaro, P. M. et al. Human leukocyte formin: a novel protein expressed in lymphoid malignancies and associated with Akt. Biochem. Biophys. Res. Commun. 311, 365–371 (2003).
CAS PubMed Google Scholar
- Favaro, P. M. et al. High expression of FMNL1 protein in T non-Hodgkin's lymphomas. Leuk. Res. 30, 735–738 (2006).
CAS PubMed Google Scholar
- Zhu, X. L., Liang, L. & Ding, Y. Q. Overexpression of FMNL2 is closely related to metastasis of colorectal cancer. Int. J. Colorectal Dis. 23, 1041–1047 (2008).
PubMed Google Scholar
- Lizarraga, F. et al. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 69, 2792–2800 (2009).
CAS PubMed Google Scholar
- Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).
Google Scholar
- Carreira, S. et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 3426–3439 (2006).
CAS PubMed PubMed Central Google Scholar
- Eisenmann, K. M. et al. T cell responses in mammalian diaphanous-related formin mDia1 knock-out mice. J. Biol. Chem. 282, 25152–25158 (2007).
CAS PubMed Google Scholar
- Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).
CAS PubMed PubMed Central Google Scholar
- Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).
CAS PubMed PubMed Central Google Scholar
- Schuster, I. G. et al. Allorestricted T cells with specificity for the FMNL1-derived peptide PP2 have potent antitumor activity against hematologic and other malignancies. Blood 110, 2931–2939 (2007).
CAS PubMed Google Scholar
- Peng, J. et al. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 67, 7565–7571 (2007).
CAS PubMed Google Scholar
- Gomez, T. S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).
CAS PubMed PubMed Central Google Scholar
- Colucci-Guyon, E. et al. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr. Biol. 15, 2007–2012 (2005).
CAS PubMed Google Scholar
- Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).
CAS PubMed Google Scholar
- Dumont, J. et al. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265 (2007).
CAS PubMed Google Scholar
- Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994). This pioneering study first defined the formin gene family and was the first to show that formins play crucial parts in cytokinesis.
CAS PubMed Google Scholar
- Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 126, 5353–5364 (1999).
CAS PubMed Google Scholar
- Afshar, K., Stuart, B. & Wasserman, S. A. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127, 1887–1897 (2000).
CAS PubMed Google Scholar
- Grosshans, J. et al. RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development 132, 1009–1020 (2005).
CAS PubMed Google Scholar
- Zhou, F., Leder, P., Zuniga, A. & Dettenhofer, M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum. Mol. Genet. 18, 2472–2482 (2009).
CAS PubMed PubMed Central Google Scholar
- Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).
CAS PubMed PubMed Central Google Scholar
- Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).
CAS PubMed Google Scholar
- Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol. 7, 619–625 (2005).
CAS PubMed Google Scholar
- Yang, C. et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 5, e317 (2007).
PubMed PubMed Central Google Scholar
- Otomo, T. & Rosen, M. K. Structure and function of Formin homology 2 domain. Tanpakushitsu Kakusan Koso 50, 1088–1093 (2005).
CAS PubMed Google Scholar
- Amberg, D. C., Zahner, J. E., Mulholland, J. W., Pringle, J. R. & Botstein, D. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol. Biol. Cell 8, 729–753 (1997).
CAS PubMed PubMed Central Google Scholar
- Qi, M. & Elion, E. A. Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3. J. Cell Sci. 118, 2837–2848 (2005).
CAS PubMed Google Scholar
- Ozaki-Kuroda, K. et al. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol. Cell Biol. 21, 827–839 (2001).
CAS PubMed PubMed Central Google Scholar
- Carnahan, R. H. & Gould, K. L. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J. Cell Biol. 162, 851–862 (2003).
CAS PubMed PubMed Central Google Scholar
- Feierbach, B., Verde, F. & Chang, F. Regulation of a formin complex by the microtubule plus end protein Tea1p. J. Cell Biol. 165, 697–707 (2004).
CAS PubMed PubMed Central Google Scholar
- Goulimari, P. et al. Gα12/13 is essential for directed cell migration and localized Rho–Dia1 function. J. Biol. Chem. 280, 42242–42251 (2005).
CAS PubMed Google Scholar
- Fernandez-Borja, M., Janssen, L., Verwoerd, D., Hordijk, P. & Neefjes, J. RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J. Cell Sci. 118, 2661–2670 (2005).
CAS PubMed Google Scholar
- Pellegrin, S. & Mellor, H. The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133 (2005).
CAS PubMed Google Scholar
- Nakaya, M. A. et al. Identification and comparative expression analyses of Daam genes in mouse and Xenopus. Gene Expr Patterns 5, 97–105 (2004).
CAS PubMed Google Scholar
- Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).
CAS PubMed Google Scholar
- Matusek, T. et al. Formin proteins of the DAAM subfamily play a role during axon growth. J. Neurosci. 28, 13310–13319 (2008).
CAS PubMed PubMed Central Google Scholar
- Yamashita, T. et al. Identification and characterization of a novel Delphilin variant with an alternative N-terminus. Brain Res. Mol. Brain Res. 141, 83–94 (2005).
CAS PubMed Google Scholar
- Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).
CAS PubMed PubMed Central Google Scholar
- Koka, S., Minick, G. T., Zhou, Y., Westendorf, J. J. & Boehm, M. B. Src regulates the activity of the mammalian formin protein FHOD1. Biochem. Biophys. Res. Commun. 336, 1285–1291 (2005).
CAS PubMed Google Scholar
- Gasteier, J. E. et al. FHOD1 coordinates actin filament and microtubule alignment to mediate cell elongation. Exp. Cell Res. 306, 192–202 (2005).
CAS PubMed Google Scholar
- Schulte, A. et al. The human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation. Structure 16, 1313–1323 (2008).
CAS PubMed Google Scholar
- Bosch, M. et al. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol. Cell 28, 555–568 (2007).
CAS PubMed Google Scholar
- Dettenhofer, M., Zhou, F. & Leder, P. Formin 1-isoform IV deficient cells exhibit defects in cell spreading and focal adhesion formation. PLoS ONE 3, e2497 (2008).
PubMed PubMed Central Google Scholar
- Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008).
CAS PubMed Google Scholar
- Li, H., Guo, F., Rubinstein, B. & Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nature Cell Biol. 10, 1301–1308 (2008).
CAS PubMed Google Scholar
- Yayoshi-Yamamoto, S., Taniuchi, I. & Watanabe, T. FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages. Mol. Cell. Biol. 20, 6872–6881 (2000).
CAS PubMed PubMed Central Google Scholar