- de Duve, C. The lysosome turns fifty. Nature Cell Biol. 7, 847–849 (2005).
CAS PubMed Google Scholar
- Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev. Mol. Cell Biol. 10, 623–635 (2009). A comprehensive overview of lysosomal function and the role of lysosomal membrane proteins.
Article CAS Google Scholar
- Luzio, J. P., Parkinson, M. D., Gray, S. R. & Bright, N. A. The delivery of endocytosed cargo to lysosomes. Biochem. Soc. Trans. 37, 1019–1021 (2009).
Article CAS PubMed Google Scholar
- Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407–417 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Mijaljica, D., Prescott, M. & Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673–682 (2011).
Article CAS PubMed Google Scholar
- Chieregatti, E. & Meldolesi, J. Regulated exocytosis: new organelles for non-secretory purposes. Nature Rev. Mol. Cell Biol. 6, 181–187 (2005).
Article Google Scholar
- Verhage, M. & Toonen, R. F. Regulated exocytosis: merging ideas on fusing membranes. Curr. Opin. Cell Biol. 19, 402–408 (2007).
Article CAS PubMed Google Scholar
- Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).
Article CAS Google Scholar
- Mostov, K. & Werb, Z. Journey across the osteoclast. Science 276, 219–220 (1997).
Article CAS PubMed Google Scholar
- Stinchcombe, J., Bossi, G. & Griffiths, G. M. Linking albinism and immunity: the secrets of secretory lysosomes. Science 305, 55–59 (2004).
Article CAS PubMed Google Scholar
- Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009). Discovers that lysosomal function is subject to global transcriptional regulation by the master regulator TFEB.
Article CAS PubMed Google Scholar
- Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011). Shows that the biogenesis of both lysosomes and autophagosomes are jointly regulated by TFEB. Starvation induces TFEB cytoplasm-to-nucleus shuttling via a phosphorylation-dependent mechanism.
Article CAS PubMed PubMed Central Google Scholar
- Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).
Article CAS PubMed Google Scholar
- Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nature Rev. Mol. Cell Biol. 8, 622–632 (2007).
Article CAS Google Scholar
- Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).
Article CAS PubMed Google Scholar
- Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).
Article CAS Google Scholar
- Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
Article CAS PubMed Google Scholar
- Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).
Article CAS PubMed Google Scholar
- Luzio, J. P. et al. ESCRT proteins and the regulation of endocytic delivery to lysosomes. Biochem. Soc. Trans. 37, 178–180 (2009).
Article CAS PubMed Google Scholar
- Sridhar, S. et al. The lipid kinase PI4KIIIβ preserves lysosomal identity. EMBO J. 32, 324–339 (2013).
Article CAS PubMed Google Scholar
- Schulze, H., Kolter, T. & Sandhoff, K. Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. Biochim. Biophys. Acta 1793, 674–683 (2009).
Article CAS PubMed Google Scholar
- Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Wang, T., Ming, Z., Xiaochun, W. & Hong, W. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell. Signal. 23, 516–521 (2011).
Article CAS PubMed Google Scholar
- Pryor, P. R. et al. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5, 590–595 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).
Article CAS PubMed Google Scholar
- Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).
Article CAS Google Scholar
- Ohya, T. et al. Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature 459, 1091–1097 (2009).
Article CAS PubMed Google Scholar
- Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470 (2012).
Article CAS PubMed Google Scholar
- Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).
Article CAS PubMed Google Scholar
- Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).
Article CAS PubMed Google Scholar
- Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol. 4, 202–212 (2003).
Article CAS Google Scholar
- Neufeld, E. F. The uptake of enzymes into lysosomes: an overview. Birth Defects Orig. Artic. Ser. 16, 77–84 (1980).
CAS PubMed Google Scholar
- Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007). Reveals a new transport mechanism of lysosomal enzymes that is responsible for the targeting of β-glucocerebrosidase.
Article CAS PubMed Google Scholar
- Gallala, H. D., Breiden, B. & Sandhoff, K. Regulation of the NPC2 protein-mediated cholesterol trafficking by membrane lipids. J. Neurochem. 116, 702–707 (2011).
Article CAS PubMed Google Scholar
- Munford, R. S., Sheppard, P. O. & O'Hara, P. J. Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. J. Lipid Res. 36, 1653–1663 (1995).
CAS PubMed Google Scholar
- Kolter, T. & Sandhoff, K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 21, 81–103 (2005).
Article CAS PubMed Google Scholar
- Furst, W. & Sandhoff, K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim. Biophys. Acta 1126, 1–16 (1992).
Article CAS PubMed Google Scholar
- Mobius, W., Herzog, V., Sandhoff, K. & Schwarzmann, G. Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J. Histochem. Cytochem. 47, 1005–1014 (1999).
Article CAS PubMed Google Scholar
- Burkhardt, J. K. et al. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur. J. Cell Biol. 73, 10–18 (1997).
CAS PubMed Google Scholar
- Bradova, V. et al. Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum. Genet. 92, 143–152 (1993).
Article CAS PubMed Google Scholar
- Schnabel, D. et al. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J. Biol. Chem. 267, 3312–3315 (1992).
CAS PubMed Google Scholar
- Cosma, M. P. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456 (2003).
Article CAS PubMed Google Scholar
- Dierks, T. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113, 435–444 (2003).
Article CAS PubMed Google Scholar
- Bagshaw, R. D., Mahuran, D. J. & Callahan, J. W. Lysosomal membrane proteomics and biogenesis of lysosomes. Mol. Neurobiol. 32, 27–41 (2005).
Article CAS PubMed Google Scholar
- Callahan, J. W., Bagshaw, R. D. & Mahuran, D. J. The integral membrane of lysosomes: its proteins and their roles in disease. J. Proteom. 72, 23–33 (2009).
Article CAS Google Scholar
- Lubke, T., Lobel, P. & Sleat, D. E. Proteomics of the lysosome. Biochim. Biophys. Acta 1793, 625–635 (2009).
Article CAS PubMed Google Scholar
- Schroder, B. A., Wrocklage, C., Hasilik, A. & Saftig, P. The proteome of lysosomes. Proteomics 10, 4053–4076 (2010).
Article CAS PubMed Google Scholar
- Sleat, D. E., Jadot, M. & Lobel, P. Lysosomal proteomics and disease. Proteomics Clin. Appl. 1, 1134–1146 (2007).
Article CAS PubMed Google Scholar
- Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).
Article CAS PubMed Google Scholar
- Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).
Article CAS PubMed Google Scholar
- Hansen, C. G. & Nichols, B. J. Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 122, 1713–1721 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol. 10, 609–622 (2009).
Article CAS Google Scholar
- Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).
Article CAS PubMed Google Scholar
- Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).
Article CAS PubMed Google Scholar
- Haglund, K. & Dikic, I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265–275 (2012).
Article CAS PubMed Google Scholar
- Ohkuma, S. & Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA 75, 3327–3331 (1978).
Article CAS PubMed PubMed Central Google Scholar
- Ohkuma, S., Moriyama, Y. & Takano, T. Identification and characterization of a proton pump on lysosomes by fluorescein–isothiocyanate–dextran fluorescence. Proc. Natl Acad. Sci. USA 79, 2758–2762 (1982).
Article CAS PubMed PubMed Central Google Scholar
- Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl−/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).
Article CAS PubMed Google Scholar
- Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Weinert, S. et al. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl− accumulation. Science 328, 1401–1403 (2010).
Article CAS PubMed Google Scholar
- Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).
Article CAS PubMed Google Scholar
- Zhang, F., Jin, S., Yi, F. & Li, P. L. TRP–ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J. Cell. Mol. Med. 13, 3174–3185 (2009).
Article PubMed Google Scholar
- Zhang, F., Xu, M., Han, W. Q. & Li, P. L. Reconstitution of lysosomal NAADP–TRP–ML1 signaling pathway and its function in TRP–ML1−/− cells. Am. J. Physiol. Cell Physiol. 301, C421–C430 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Calcraft, P. J. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596–600 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ahlberg, J., Marzella, L. & Glaumann, H. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab. Invest. 47, 523–532 (1982).
CAS PubMed Google Scholar
- Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).
Article CAS PubMed Google Scholar
- Chiang, H. L., Terlecky, S. R., Plant, C. P. & Dice, J. F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246, 382–385 (1989).
Article CAS PubMed Google Scholar
- He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009). Reviews the complex molecular mechanisms and pathways involved in the regulation of autophagy.
Article CAS PubMed PubMed Central Google Scholar
- Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383–1435 (2010).
Article CAS PubMed Google Scholar
- Rodriguez, A., Webster, P., Ortego, J. & Andrews, N. W. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137, 93–104 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Chavez, R. A., Miller, S. G. & Moore, H. P. A biosynthetic regulated secretory pathway in constitutive secretory cells. J. Cell Biol. 133, 1177–1191 (1996).
Article CAS PubMed Google Scholar
- Coorssen, J. R., Schmitt, H. & Almers, W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 15, 3787–3791 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Stinchcombe, J. C. & Griffiths, G. M. Regulated secretion from hemopoietic cells. J. Cell Biol. 147, 1–6 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Andrews, N. W. Regulated secretion of conventional lysosomes. Trends Cell Biol. 10, 316–321 (2000).
Article CAS PubMed Google Scholar
- Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Stinchcombe, J. C. & Griffiths, G. M. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell Dev. Biol. 23, 495–517 (2007).
Article CAS PubMed Google Scholar
- Logan, M. R., Odemuyiwa, S. O. & Moqbel, R. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J. Allergy Clin. Immunol. 111, 923–932 (2003).
Article CAS PubMed Google Scholar
- Wesolowski, J. & Paumet, F. The impact of bacterial infection on mast cell degranulation. Immunol. Res. 51, 215–226 (2011).
Article CAS PubMed Google Scholar
- Ren, Q., Ye, S. & Whiteheart, S. W. The platelet release reaction: just when you thought platelet secretion was simple. Curr. Opin. Hematol. 15, 537–541 (2008).
Article PubMed PubMed Central Google Scholar
- Tulsiani, D. R., Abou-Haila, A., Loeser, C. R. & Pereira, B. M. The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp. Cell Res. 240, 151–164 (1998).
Article CAS PubMed Google Scholar
- Rao, S. K., Huynh, C., Proux-Gillardeaux, V., Galli, T. & Andrews, N. W. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479 (2004).
Article CAS PubMed Google Scholar
- Bossi, G. & Griffiths, G. M. CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin. Immunol. 17, 87–94 (2005).
Article CAS PubMed Google Scholar
- LaPlante, J. M. et al. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab. 89, 339–348 (2006).
Article CAS PubMed Google Scholar
- Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011). The first demonstration that TFEB promotes cellular clearance in human disease.
Article CAS PubMed PubMed Central Google Scholar
- Dong, X. P. et al. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem. 284, 32040–32052 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).
Article PubMed PubMed Central Google Scholar
- DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966–974 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ganesan, A. K. et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 4, e1000298 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Gerasimenko, J. V., Gerasimenko, O. V. & Petersen, O. H. Membrane repair: Ca2+-elicited lysosomal exocytosis. Curr. Biol. 11, R971–R974 (2001).
Article CAS PubMed Google Scholar
- Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).
Article CAS PubMed Google Scholar
- Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).
Article CAS PubMed Google Scholar
- Han, R. et al. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J. Clin. Invest. 117, 1805–1813 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Ferron, M. et al. A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev. (in the press) (doi:10.1101/gad.213827.113).
- Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–183 (2013).
Article CAS PubMed Google Scholar
- Ganley, I. G. et al. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Chan, E. Y., Kir, S. & Tooze, S. A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282, 25464–25474 (2007).
Article CAS PubMed Google Scholar
- Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).
Article PubMed PubMed Central Google Scholar
- Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside–out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011). Identifies an amino acid sensing machinery that is located on the lysosomal surface and involves mTORC1. This implicates the lysosome in signalling and cellular energy metabolism.
Article CAS PubMed PubMed Central Google Scholar
- Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Cang, C. et al. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152, 778–790 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).
Article CAS Google Scholar
- Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Rong, Y. et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl Acad. Sci. USA 108, 7826–7831 (2011).
Article PubMed PubMed Central Google Scholar
- Rong, Y. et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nature Cell Biol. 14, 924–934 (2012).
Article CAS PubMed Google Scholar
- Rehli, M., Den Elzen, N., Cassady, A. I., Ostrowski, M. C. & Hume, D. A. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 56, 111–120 (1999).
Article CAS PubMed Google Scholar
- Medendorp, K. et al. Molecular mechanisms underlying the MiT translocation subgroup of renal cell carcinomas. Cytogenet. Genome Res. 118, 157–165 (2007).
Article CAS PubMed Google Scholar
- Ma, X., Godar, R. J., Liu, H. & Diwan, A. Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death. Autophagy 8, 297–309 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).
Article CAS PubMed Google Scholar
- Cuervo, A. M. Cell biology. Autophagy's top chef. Science 332, 1392–1393 (2011).
Article CAS PubMed Google Scholar
- Ma, D., Panda, S. & Lin, J. D. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 30, 4642–4651 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Rzymski, T. et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29, 4424–4435 (2010).
Article CAS PubMed Google Scholar
- Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).
Article CAS PubMed Google Scholar
- van der Vos, K. E. et al. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nature Cell Biol. 14, 829–837 (2012).
Article CAS PubMed Google Scholar
- Demontis, F. & Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813–825 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).
Article CAS PubMed Google Scholar
- Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).
Article CAS PubMed Google Scholar
- Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell (2013).
- Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).
Article CAS PubMed Google Scholar
- Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).
Article PubMed PubMed Central Google Scholar
- Cea, M. et al. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood 120, 3519–3529 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. mTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Pena-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature Cell Biol. 21 Apr 2013 (doi:10.1038/ncb2718).
- Singh, R. & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495–504 (2011). Shows that lipid droplets are sequestered by autophagosomes for degradation and recycling to generate free fatty acids.
Article CAS PubMed PubMed Central Google Scholar
- Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Rodriguez-Navarro, J. A. & Cuervo, A. M. Dietary lipids and aging compromise chaperone-mediated autophagy by similar mechanisms. Autophagy 8, 1152–1154 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Rodriguez-Navarro, J. A. et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 109, e705–e714 (2012).
Article PubMed PubMed Central Google Scholar
- Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Woloszynek, J. C., Coleman, T., Semenkovich, C. F. & Sands, M. S. Lysosomal dysfunction results in altered energy balance. J. Biol. Chem. 282, 35765–35771 (2007).
Article CAS PubMed Google Scholar
- Du, H., Duanmu, M., Witte, D. & Grabowski, G. A. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum. Mol. Genet. 7, 1347–1354 (1998).
Article CAS PubMed Google Scholar
- Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Grove, C. A. et al. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138, 314–327 (2009).
Article CAS PubMed PubMed Central Google Scholar
- O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lysosomal lipolysis and autophagy to nutrient availability. Nature Cell Biol. 21 Apr 2013 (doi:10.1038/ncb2741).
- Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006).
Article CAS PubMed Google Scholar
- Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).
Article CAS PubMed Google Scholar
- Steingrimsson, E., Tessarollo, L., Reid, S. W., Jenkins, N. A. & Copeland, N. G. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125, 4607–4616 (1998).
CAS PubMed Google Scholar
- Cuervo, A. M. & Dice, J. F. When lysosomes get old. Exp. Gerontol. 35, 119–131 (2000).
Article CAS PubMed Google Scholar
- Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).
Article CAS PubMed Google Scholar
- Ballabio, A. & Gieselmann, V. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793, 684–696 (2009).
Article CAS PubMed Google Scholar
- Cox, T. M. & Cachon-Gonzalez, M. B. The cellular pathology of lysosomal diseases. J. Pathol. 226, 241–254 (2012).
Article CAS PubMed Google Scholar
- Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nature Rev. Mol. Cell Biol. 5, 554–565 (2004).
Article CAS Google Scholar
- Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosciences 34, 401–410 (2011).
Article CAS Google Scholar
- Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Walkley, S. U. Pathogenic cascades in lysosomal disease — why so complex? J. Inherit. Metab. Dis. 32, 181–189 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Lieberman, A. P. et al. Autophagy in lysosomal storage disorders. Autophagy 8, 719–730 (2012).
Article CAS PubMed PubMed Central Google Scholar
- de Pablo-Latorre, R. et al. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum. Mol. Genet. 21, 1770–1781 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Di Malta, C., Fryer, J. D., Settembre, C. & Ballabio, A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc. Natl Acad. Sci. USA 109, E2334–E2342 (2012).
Article PubMed PubMed Central Google Scholar
- Fraldi, A. et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29, 3607–3620 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Settembre, C. et al. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17, 119–129 (2008).
Article CAS PubMed Google Scholar
- Cox, T. M. in Lysosomal Storage Disorders: A Practical Guide (ed. Atul Mehta, B. W. ) 153–165 (Wiley-Blackwell, 2012).
- Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nature Neurosci. 13, 805–811 (2010).
Article CAS PubMed Google Scholar
- Harris, H. & Rubinsztein, D. C. Control of autophagy as a therapy for neurodegenerative disease. Nature Rev. Neurol. 8, 108–117 (2012). A comprehensive overview of how the modulation of autophagy can be a promising therapeutic strategy for neurodegenerative diseases.
Article CAS Google Scholar
- Jeong, H. et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 60–72 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).
Article CAS PubMed Google Scholar
- Winslow, A. R. et al. α-synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190, 1023–1037 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Orenstein, S. J. et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neurosci. 16, 394–406 (2013).
Article CAS PubMed Google Scholar
- Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nature Neurosci. 13, 567–576 (2010).
Article CAS PubMed Google Scholar
- Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).
Article CAS PubMed Google Scholar
- Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Brady, R. O., Kanfer, J. N. & Shapiro, D. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher's disease. Biochem. Biophys. Res. Commun. 18, 221–225 (1965).
Article CAS PubMed Google Scholar
- Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011). Demonstrates how partial deficiency of the lysosomal enzyme β-glucocerebrosidase can be a major predisposing factor in Parkinson's disease.
Article CAS PubMed PubMed Central Google Scholar
- Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).
Article CAS PubMed Google Scholar
- Usenovic, M. & Krainc, D. Lysosomal dysfunction in neurodegeneration: the role of ATP13A2/PARK9. Autophagy 8, 987–988 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).
Article CAS PubMed Google Scholar
- Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol. 12, 119–131 (2010).
Article CAS PubMed Google Scholar
- Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).
Article PubMed PubMed Central Google Scholar
- Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).
Article CAS PubMed Google Scholar
- Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Chartier-Harlin, M. C. et al. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am. J. Hum. Genet. 89, 398–406 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010). An important example of lysosomal dysfunction associated with Alzheimer's disease.
Article CAS PubMed PubMed Central Google Scholar
- Coen, K. et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo–lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 198, 23–35 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).
Article CAS PubMed Google Scholar
- Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot–Marie–Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nature Genet. 45, 445–449 (2013).
Article CAS PubMed Google Scholar
- Yang, D. S. et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277 (2011).
Article PubMed Google Scholar
- Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703–714 (2006).
Article CAS PubMed Google Scholar
- Sun, B. et al. Cystatin C–cathepsin B axis regulates amyloid-β levels and associated neuronal deficits in an animal model of Alzheimer's disease. Neuron 60, 247–257 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).
Article CAS PubMed Google Scholar
- Menzies, F. M. et al. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133, 93–104 (2010).
Article CAS PubMed Google Scholar
- Rose, C. et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet. 19, 2144–2153 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Tanaka, M. et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Med. 10, 148–154 (2004).
Article CAS PubMed Google Scholar
- Spampanato, C. et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med. 11 Apr 2013 (doi:10.1002/emmm.201202176.
- Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535–12544 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Tsunemi, T. et al. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 4, 142ra97 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Pastore, N. et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in α-1-anti-trypsin deficiency. EMBO Mol. Med. 5, 397–412 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Bagshaw, R. D., Mahuran, D. J. & Callahan, J. W. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol. Cell. Proteom. 4, 133–143 (2005).
Article CAS Google Scholar
- Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).
Article CAS PubMed Google Scholar
- Andrejewski, N. et al. Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 274, 12692–12701 (1999).
Article CAS PubMed Google Scholar
- Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases — nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002).
Article CAS Google Scholar
- Marshansky, V. & Futai, M. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20, 415–426 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Dong, X. P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Wong, C. O., Li, R., Montell, C. & Venkatachalam, K. Drosophila TRPML is required for TORC1 activation. Curr. Biol. 22, 1616–1621 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bargal, R. et al. Identification of the gene causing mucolipidosis type IV. Nature Genet. 26, 118–123 (2000).
Article CAS PubMed Google Scholar
- Bassi, M. T. et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet. 67, 1110–1120 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Jentsch, T. J., Poet, M., Fuhrmann, J. C. & Zdebik, A. A. Physiological functions of CLC Cl− channels gleaned from human genetic disease and mouse models. Annu. Rev. Physiol. 67, 779–807 (2005).
Article CAS PubMed Google Scholar
- Cuervo, A. M., Gomes, A. V., Barnes, J. A. & Dice, J. F. Selective degradation of annexins by chaperone-mediated autophagy. J. Biol. Chem. 275, 33329–33335 (2000).
Article CAS PubMed Google Scholar
- Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).
Article CAS PubMed Google Scholar
- Lloyd-Evans, E. et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Med. 14, 1247–1255 (2008).
Article CAS PubMed Google Scholar
- Liu, B., Du, H., Rutkowski, R., Gartner, A. & Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337, 351–354 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hrebicek, M. et al. Mutations in TMEM76* cause mucopolysaccharidosis IIIC (Sanfilippo C syndrome). Am. J. Hum. Genet. 79, 807–819 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Fan, X. et al. Identification of the gene encoding the enzyme deficient in mucopolysaccharidosis IIIC (Sanfilippo disease type C). Am. J. Hum. Genet. 79, 738–744 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Durand, S., Feldhammer, M., Bonneil, E., Thibault, P. & Pshezhetsky, A. V. Analysis of the biogenesis of heparan sulfate acetyl-CoA:α-glucosaminide _N_-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC. J. Biol. Chem. 285, 31233–31242 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Efeyan, A., Zoncu, R. & Sabatini, D. M. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 18, 524–533 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).
Article CAS PubMed Google Scholar