Cellular mechanisms and physiological consequences of redox-dependent signalling (original) (raw)
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.11, 298–300 (1956). CASPubMed Google Scholar
Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science270, 296–299 (1995). CASPubMed Google Scholar
Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem.272, 217–221 (1997). Shows, together with reference 2, that growth factor stimulation induces a burst of ROS that is required for subsequent signalling. CASPubMed Google Scholar
Woo, H. A. et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell140, 517–528 (2010). CASPubMed Google Scholar
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J.417, 1–13 (2009). CASPubMed Google Scholar
Jensen, P. K. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim. Biophys. Acta122, 157–166 (1966). CASPubMed Google Scholar
Mailloux, R. J. & Harper, M. E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab.23, 451–458 (2012). CASPubMed Google Scholar
Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell48, 158–167 (2012). CASPubMedPubMed Central Google Scholar
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA95, 11715–11720 (1998). One of the earliest descriptions that mitochondrial oxidants function as signalling molecules. CASPubMedPubMed Central Google Scholar
Nemoto, S., Takeda, K., Yu, Z. X., Ferrans, V. J. & Finkel, T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol.20, 7311–7318 (2000). CASPubMedPubMed Central Google Scholar
Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood92, 3007–3017 (1998). CASPubMed Google Scholar
Lo, Y. Y. & Cruz, T. F. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem.270, 11727–11730 (1995). CASPubMed Google Scholar
Rajagopalan, S. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest.97, 1916–1923 (1996). CASPubMedPubMed Central Google Scholar
Sundaresan, M. et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem. J.318, 379–382 (1996). CASPubMedPubMed Central Google Scholar
Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N. & Griendling, K. K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem.271, 23317–23321 (1996). CASPubMed Google Scholar
Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature401, 79–82 (1999). Describes the cloning of the first non-phagocytic cell member of the NOX superfamily of NADPH oxidases. CASPubMed Google Scholar
Aguirre, J. & Lambeth, J. D. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic. Biol. Med.49, 1342–1353 (2010). CASPubMedPubMed Central Google Scholar
Nakano, Y. et al. Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J. Clin. Invest.118, 1176–1185 (2008). CASPubMedPubMed Central Google Scholar
Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nature Chem. Biol.10, 9–17 (2014). CAS Google Scholar
Kil, I. S. et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell46, 584–594 (2012). CASPubMed Google Scholar
Truong, T. H. & Carroll, K. S. Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry51, 9954–9965 (2012). CASPubMed Google Scholar
Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell9, 387–399 (2002). Demonstrates the reversible oxidation and inactivation of an intracellular target by physiological levels of ROS. CASPubMed Google Scholar
Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry37, 5633–5642 (1998). CASPubMed Google Scholar
Paulsen, C. E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nature Chem. Biol.8, 57–64 (2012). CAS Google Scholar
Frijhoff, J., Dagnell, M., Godfrey, R. & Ostman, A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid. Redox Signal20, 1994–2010 (2014). CASPubMed Google Scholar
Leslie, N. R. et al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J.22, 5501–5510 (2003). CASPubMedPubMed Central Google Scholar
Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl Acad. Sci. USA101, 16419–16424 (2004). CASPubMedPubMed Central Google Scholar
Savitsky, P. A. & Finkel, T. Redox regulation of Cdc25C. J. Biol. Chem.277, 20535–20540 (2002). CASPubMed Google Scholar
Jeong, W., Bae, S. H., Toledano, M. B. & Rhee, S. G. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic. Biol. Med.53, 447–456 (2012). CASPubMed Google Scholar
Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science300, 650–653 (2003). CASPubMed Google Scholar
Chen, K., Kirber, M. T., Xiao, H., Yang, Y. & Keaney, J. F. Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol.181, 1129–1139 (2008). CASPubMedPubMed Central Google Scholar
Erickson, J. R. et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell133, 462–474 (2008). CASPubMedPubMed Central Google Scholar
Hung, R. J., Spaeth, C. S., Yesilyurt, H. G. & Terman, J. R. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nature Cell Biol.15, 1445–1454 (2013). CASPubMed Google Scholar
Lee, B. C. et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell51, 397–404 (2013). CASPubMedPubMed Central Google Scholar
Xanthoudakis, S. & Curran, T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J.11, 653–665 (1992). CASPubMedPubMed Central Google Scholar
Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nature Struct. Mol. Biol.11, 1179–1185 (2004). CAS Google Scholar
Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell49, 730–742 (2013). CASPubMed Google Scholar
Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells16, 123–140 (2011). CASPubMed Google Scholar
Scherz-Shouval, R. & Elazar, Z. Monitoring starvation-induced reactive oxygen species formation. Methods Enzymol.452, 119–130 (2009). CASPubMed Google Scholar
Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26, 1749–1760 (2007). CASPubMedPubMed Central Google Scholar
Zhang, J. et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature Cell Biol.15, 1186–1196 (2013). CASPubMed Google Scholar
Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science310, 847–850 (2005). CASPubMed Google Scholar
Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J.26, 4457–4466 (2007). CASPubMedPubMed Central Google Scholar
Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J.32, 3017–3028 (2013). CASPubMedPubMed Central Google Scholar
Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science289, 1560–1563 (2000). CASPubMed Google Scholar
Lee, W. J. Bacterial-modulated host immunity and stem cell activation for gut homeostasis. Genes Dev.23, 2260–2265 (2009). CASPubMedPubMed Central Google Scholar
West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature472, 476–480 (2011). CASPubMedPubMed Central Google Scholar
Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med.208, 519–533 (2011). CASPubMedPubMed Central Google Scholar
Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA106, 2770–2775 (2009). CASPubMedPubMed Central Google Scholar
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ArticleCASPubMed Google Scholar
Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity38, 225–236 (2013). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res.23, 898–914 (2013). CASPubMedPubMed Central Google Scholar
Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol.227, 421–430 (2012). CASPubMed Google Scholar
Urao, N. & Ushio-Fukai, M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic. Biol. Med.54, 26–39 (2013). CASPubMed Google Scholar
Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature431, 997–1002 (2004). CASPubMed Google Scholar
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell128, 325–339 (2007). CASPubMed Google Scholar
Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell1, 101–112 (2007). References 58–60 provide convincing evidence for the relationship between redox homeostasis and stem cell self-renewal. CASPubMed Google Scholar
Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419, 316–321 (2002). CASPubMed Google Scholar
Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science295, 2450–2452 (2002). CASPubMed Google Scholar
Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature459, 387–392 (2009). CASPubMedPubMed Central Google Scholar
Chatoo, W. et al. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J. Neurosci.29, 529–542 (2009). CASPubMedPubMed Central Google Scholar
Chuikov, S., Levi, B. P., Smith, M. L. & Morrison, S. J. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nature Cell Biol.12, 999–1006 (2010). CASPubMed Google Scholar
Abbas, H. A. et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell7, 606–617 (2010). CASPubMedPubMed Central Google Scholar
Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell8, 59–71 (2011). CASPubMedPubMed Central Google Scholar
Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nature Chem. Biol.7, 106–112 (2011). CAS Google Scholar
Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell12, 774–786 (2013). CASPubMed Google Scholar
Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature461, 537–541 (2009). CASPubMedPubMed Central Google Scholar
Li, T. S. & Marban, E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells28, 1178–1185 (2010). CASPubMedPubMed Central Google Scholar
Funato, Y., Michiue, T., Asashima, M. & Miki, H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled. Nature Cell Biol.8, 501–508 (2006). CASPubMed Google Scholar
Kajla, S. et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-β-catenin signaling. FASEB J.26, 2049–2059 (2012). CASPubMed Google Scholar
Hamanaka, R. B. et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal6, ra8 (2013). PubMedPubMed Central Google Scholar
Duncan, A. W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunol.6, 314–322 (2005). CAS Google Scholar
de Keizer, P. L., Burgering, B. M. & Dansen, T. B. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid. Redox Signal14, 1093–1106 (2011). CASPubMed Google Scholar
Coant, N. et al. NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol. Cell. Biol.30, 2636–2650 (2010). CASPubMedPubMed Central Google Scholar
Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell. Metab.17, 954–964 (2013). The first study to show a link between mROS and epigenetics. CASPubMedPubMed Central Google Scholar
Lee, J. G., Baek, K., Soetandyo, N. & Ye, Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nature Commun.4, 1568 (2013). Google Scholar
Cotto-Rios, X. M., Bekes, M., Chapman, J., Ueberheide, B. & Huang, T. T. Deubiquitinases as a signaling target of oxidative stress. Cell Rep.2, 1475–1484 (2012). CASPubMedPubMed Central Google Scholar
Kulathu, Y. et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nature Commun.4, 1569 (2013). Google Scholar
The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and β carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med.330, 1029–1035 (1994).
Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol.3, 120144 (2013). PubMedPubMed Central Google Scholar
Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452, 230–233 (2008). CASPubMed Google Scholar
Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science334, 1278–1283 (2011). An interesting link between cancer metabolism and redox signalling. CASPubMedPubMed Central Google Scholar
Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol.76, 389–396 (2011). CASPubMed Google Scholar
Bensaad, K., Cheung, E. C. & Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J.28, 3015–3026 (2009). CASPubMedPubMed Central Google Scholar
Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science336, 225–228 (2012). CASPubMedPubMed Central Google Scholar
Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science320, 661–664 (2008). CASPubMed Google Scholar
Irani, K. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science275, 1649–1652 (1997). CASPubMed Google Scholar
Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A. & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl Acad. Sci. USA93, 11848–11852 (1996). CASPubMedPubMed Central Google Scholar
Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature389, 300–305 (1997). CASPubMed Google Scholar
Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem.274, 7936–7940 (1999). CASPubMed Google Scholar
DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature475, 106–109 (2011). CASPubMedPubMed Central Google Scholar
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nature Rev. Drug Discov.12, 931–947 (2013). CAS Google Scholar
Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell120, 483–495 (2005). CASPubMed Google Scholar
Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genom.16, 29–37 (2003). CAS Google Scholar
Yang, W., Li, J. & Hekimi, S. A. Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics177, 2063–2074 (2007). CASPubMedPubMed Central Google Scholar
Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science308, 1909–1911 (2005). CASPubMed Google Scholar
Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell. Metab.6, 280–293 (2007). One of the first demonstrations of the concept of hormesis with regard to ageing by showing that in the worm, oxidative stress can extend lifespan. CASPubMed Google Scholar
Zarse, K. et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell. Metab.15, 451–465 (2012). CASPubMedPubMed Central Google Scholar
Lapointe, J. & Hekimi, S. Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J. Biol. Chem.283, 26217–26227 (2008). CASPubMedPubMed Central Google Scholar
Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev.19, 2424–2434 (2005). CASPubMedPubMed Central Google Scholar
Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature394, 694–697 (1998). CASPubMed Google Scholar
Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet.8, e1002760 (2012). CASPubMedPubMed Central Google Scholar
Pan, Y., Schroeder, E. A., Ocampo, A., Barrientos, A. & Shadel, G. S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell. Metab.13, 668–678 (2011). Demonstrates the concept of hormesis in a model organism (yeast), in which the release of mROS might extend rather than shorten lifespan. CASPubMedPubMed Central Google Scholar
Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA106, 8665–8670 (2009). CASPubMedPubMed Central Google Scholar
Cocheme, H. M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell. Metab.13, 340–350 (2011). CASPubMedPubMed Central Google Scholar
Dikalov, S. I. & Harrison, D. G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal20, 372–382 (2014). CASPubMedPubMed Central Google Scholar
Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y. & Chang, C. J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc.127, 16652–16659 (2005). CASPubMedPubMed Central Google Scholar
Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol.3, 263–267 (2007). CAS Google Scholar
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods3, 281–286 (2006). CASPubMed Google Scholar
Morgan, B., Sobotta, M. C. & Dick, T. P. Measuring _E_GSH and H2O2 with roGFP2-based redox probes. Free Radic. Biol. Med.51, 1943–1951 (2011). CASPubMed Google Scholar
Rhee, S. G., Woo, H. A., Kil, I. S. & Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem.287, 4403–4410 (2012). CASPubMed Google Scholar
Reddi, A. R. & Culotta, V. C. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell152, 224–235 (2013). CASPubMedPubMed Central Google Scholar
Bause, A. S. & Haigis, M. C. SIRT3 regulation of mitochondrial oxidative stress. Exp. Gerontol.48, 634–639 (2013). CASPubMed Google Scholar
Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA107, 15681–15686 (2010). CASPubMedPubMed Central Google Scholar