Retro-translocation of proteins from the endoplasmic reticulum into the cytosol (original) (raw)
Matlack, K. E. S., Mothes, W. & Rapoport, T. A. Protein translocation — tunnel vision. Cell92, 381–390 (1998). ArticleCASPubMed Google Scholar
Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell101, 451–454 (2000). CASPubMed Google Scholar
Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101, 249–258 (2000). CASPubMed Google Scholar
Casagrande, R. et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell5, 729–735 (2000). CASPubMed Google Scholar
Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol.2, 379–384 (2000). CASPubMed Google Scholar
Hong, E., Davidson, A. R. & Kaiser, C. A. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol.135, 623–633 (1996). CASPubMed Google Scholar
Chang, A. & Fink, G. R. Targeting of the yeast plasma membrane [H+]ATPase: a novel gene AST1 prevents mislocalization of mutant ATPase to the vacuole. J. Cell Biol.128, 39–49 (1995). CASPubMed Google Scholar
Klausner, R. D. & Sitia, R. Protein degradation in the endoplasmic reticulum. Cell62, 611–614 (1990). CASPubMed Google Scholar
Kopito, R. R. ER quality control: the cytoplasmic connection. Cell88, 427–430 (1997). CASPubMed Google Scholar
McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol.132, 291–298 (1996).This report and reference74describein vitrosystems for the degradation of ER-associated proteins. Reference10first showed a cytosolic requirement for the degradation of a soluble ER protein. CASPubMed Google Scholar
Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol.10, 507–513 (1999).This review gives a list of ER-associated degradation substrates in yeast. Components that are required and not required for their degradation are listed. The table indicates that different degradation pathways exist. CASPubMed Google Scholar
Kopito, R. R. & Sitia, R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep.1, 225–231 (2000). CASPubMedPubMed Central Google Scholar
Rivera, V. M. et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science287, 826–830 (2000). CASPubMed Google Scholar
Braakman, I., Helenius, J. & Helenius, A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature356, 260–262 (1992). CASPubMed Google Scholar
Vashist, S. et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol.155, 355–368 (2001).This paper and reference17show that soluble, misfolded ER proteins must first be transported from the ER to the Golgi before they can be degraded. CASPubMedPubMed Central Google Scholar
Caldwell, S. R., Hill, K. J. & Cooper, A. A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem.276, 23296–23303 (2001). CASPubMed Google Scholar
Kamhi-Nesher, S. et al. A novel quality control compartment derived from the endoplasmic reticulum. Mol. Biol. Cell12, 1711–1723 (2001). CASPubMedPubMed Central Google Scholar
Wiertz, E. J. H. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell84, 769–779 (1996). CASPubMed Google Scholar
Wiertz, E. J. H. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996).This paper provides the first evidence that the Sec61 channel might be involved in retro-translocation of ER proteins. It also shows that viruses can co-opt the cellular pathway. CASPubMed Google Scholar
Schubert, U. et al. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol.72, 2280–2288 (1998). CASPubMedPubMed Central Google Scholar
Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a viral phd/lap finger protein. Immunity15, 627–636 (2001). CASPubMed Google Scholar
Sandvig, K. & van Deurs, B. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J.19, 5943–5950 (2000). CASPubMedPubMed Central Google Scholar
Lord, J. M. & Roberts, L. M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol.140, 733–736 (1998). CASPubMed Google Scholar
Lencer, W. I., Hirst, T. R. & Holmes, R. K. Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta1450, 177–190 (1999). CASPubMed Google Scholar
Schmitz, A., Herrgen, H., Winkeler, A. & Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol.148, 1203–1212 (2000). CASPubMedPubMed Central Google Scholar
Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol.13, 431–437 (2001).This review summarizes the current knowledge of quality control in the ER, with emphasis on the ER retention and degradation of glycoproteins. CASPubMed Google Scholar
Knop, M., Hauser, N. & Wolf, D. H. N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast12, 1229–1238 (1996). CASPubMed Google Scholar
Jakob, C. A., Burda, P., Roth, J. & Aebi, M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol.142, 1223–1233 (1998).This paper and reference30indicate that the generation of a Man8-containing carbohydrate chain targets a misfolded glycoprotein to the degradation machinery. CASPubMedPubMed Central Google Scholar
Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem.274, 5861–5867 (1999). CASPubMed Google Scholar
Hosokawa, N. et al. A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep.2, 415–422 (2001). CASPubMedPubMed Central Google Scholar
Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. & Endo, T. Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem.276, 8635–8638 (2001). CASPubMed Google Scholar
Jakob, C. A. et al. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep.2, 423–430 (2001). CASPubMedPubMed Central Google Scholar
Tokunaga, F., Brostrom, C., Koide, T. & Arvan, P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J. Biol. Chem.275, 40757–40764 (2000). CASPubMed Google Scholar
Wilson, C. M., Farmery, M. R. & Bulleid, N. J. Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J. Biol. Chem.275, 21224–21232 (2000). CASPubMed Google Scholar
Gillece, P., Luz, J. M., Lennarz, W. J., de La Cruz, F. J. & Romisch, K. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J. Cell. Biol.147, 1443–1456 (1999).This paper, and references40and41, raise the possibility that PDI and related proteins could serve to unfold proteins in the ER lumen and to target substrates to the retro-translocation machinery. CASPubMedPubMed Central Google Scholar
Fagioli, C., Mezghrani, A. & Sitia, R. Reduction of interchain disulfide bonds precedes the dislocation of Ig-μ chains from the endoplasmic reticulum to the cytosol for proteasomal degradation. J. Biol. Chem.276, 40962–40967 (2001). CASPubMed Google Scholar
Orlandi, P. A. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem.272, 4591–4599 (1997). CASPubMed Google Scholar
Tortorella, D. et al. Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J. Cell Biol.142, 365–376 (1998). CASPubMedPubMed Central Google Scholar
Wang, Q. & Chang, A. Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J.18, 5972–5982 (1999). CASPubMedPubMed Central Google Scholar
Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell104, 937–948 (2001). CASPubMed Google Scholar
Knittler, M. R., Dirks, S. & Haas, I. G. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA92, 1764–1768 (1995). CASPubMedPubMed Central Google Scholar
Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature388, 891–895 (1997). CASPubMed Google Scholar
Brodsky, J. L. et al. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J. Biol. Chem.274, 3453–3460 (1999). CASPubMed Google Scholar
Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α-factor across the ER membrane. Cell97, 553–564 (1999). CASPubMed Google Scholar
Chillaron, J. & Haas, I. G. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol. Biol. Cell11, 217–226 (2000). CASPubMedPubMed Central Google Scholar
Misselwitz, B., Staeck, O. & Rapoport, T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell2, 593–603 (1998). CASPubMed Google Scholar
Gillece, P., Pilon, M. & Romisch, K. The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA97, 4609–4614 (2000). CASPubMedPubMed Central Google Scholar
Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J.16, 4540–4548 (1997). CASPubMedPubMed Central Google Scholar
Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol.153, 1061–1070 (2001). CASPubMedPubMed Central Google Scholar
Chen, Y., Le Caherec, F. & Chuck, S. L. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J. Biol. Chem.273, 11887–11894 (1998). CASPubMed Google Scholar
Gewurz, B. E. et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA98, 6794–6799 (2001). CASPubMedPubMed Central Google Scholar
Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S. & Sorscher, E. J. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem.273, 29873–29878 (1998). CASPubMed Google Scholar
de Virgilio, M., Weninger, H. & Ivessa, N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem.273, 9734–9743 (1998). CASPubMed Google Scholar
Petaja-Repo, U. E. et al. Newly synthesized human δ-opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J. Biol. Chem.276, 4416–4423 (2001). CASPubMed Google Scholar
Wesche, J., Rapak, A. & Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem.274, 34443–34449 (1999). CASPubMed Google Scholar
Simpson, J. C. et al. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett.459, 80–84 (1999). CASPubMed Google Scholar
Zhou, M. & Schekman, R. The engagement of Sec61p in the ER dislocation process. Mol. Cell4, 925–934 (1999). CASPubMed Google Scholar
Walter, J., Urban, J., Volkwein, C. & Sommer, T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J.20, 3124–3131 (2001). CASPubMedPubMed Central Google Scholar
Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J.18, 2970–2981 (1999).This paper and reference61show that misfolded proteins are extracted from bacterial and mitochondrial membranes by AAA proteases. CASPubMedPubMed Central Google Scholar
Leonhard, K. et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell5, 629–638 (2000). CASPubMed Google Scholar
Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell89, 535–544 (1997). CASPubMed Google Scholar
Menetret, J. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell6, 1219–1232 (2000). CASPubMed Google Scholar
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell107, 361–372 (2001). CASPubMed Google Scholar
Mitchell, D. M. et al. Apoprotein B100 has a prolonged interaction with the translocon during which its lipidation and translocation change from dependence on the microsomal triglyceride transfer protein to independence. Proc. Natl Acad. Sci. USA95, 14733–14738 (1998). CASPubMedPubMed Central Google Scholar
Plemper, R. K., Deak, P. M., Otto, R. T. & Wolf, D. H. Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett.443, 241–245 (1999). CASPubMed Google Scholar
Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell102, 233–244 (2000). CASPubMed Google Scholar
Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin–proteasome pathway. Science273, 1725–1728 (1996). CASPubMed Google Scholar
Biederer, T., Volkwein, C. & Sommer, T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin–proteasome pathway. EMBO J.15, 2069–2076 (1996). CASPubMedPubMed Central Google Scholar
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin–proteasome pathway. Cell83, 121–127 (1995). CASPubMed Google Scholar
Yu, H. & Kopito, R. R. The role of multiubiquitination in dislocation and degradation of the α-subunit of the T cell antigen receptor. J. Biol. Chem.274, 36852–36858 (1999). CASPubMed Google Scholar
Kikkert, M. et al. Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem. J.358, 369–377 (2001). CASPubMedPubMed Central Google Scholar
Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell12, 2546–2555 (2001). CASPubMedPubMed Central Google Scholar
Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol.147, 45–58 (1999). CASPubMedPubMed Central Google Scholar
Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature414, 652–656 (2001).This paper, and references91, 97– 99, show that the AAA ATPase Cdc48/p97 and its partners Ufd1 and Npl4 are involved in ER-protein degradation. The complex seems to extract proteins from the ER membrane. CASPubMed Google Scholar
Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science278, 1806–1809 (1997). CASPubMed Google Scholar
Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature365, 176–179 (1993).This paper gives the first evidence for the involvement of ubiquitylation in ER-protein degradation. The absence of a ubiquitin-conjugating enzyme (Ubc6) suppresses asec61mutant, which indicates that a misfolded membrane protein is stabilized. CASPubMed Google Scholar
Hampton, R. Y. & Bhakta, H. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl Acad. Sci. USA94, 12944–12948 (1997). CASPubMedPubMed Central Google Scholar
Plemper, R. K., Egner, R., Kuchler, K. & Wolf, D. H. Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem.273, 32848–32856 (1998). CASPubMed Google Scholar
Hill, K. & Cooper, A. A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J.19, 550–561 (2000). CASPubMedPubMed Central Google Scholar
Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell7, 2029–2044 (1996).This paper and reference82describe genetic screens in yeast to identify components that are involved in ER protein degradation. CASPubMedPubMed Central Google Scholar
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J.15, 753–763 (1996). CASPubMedPubMed Central Google Scholar
Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell9, 209–222 (1998). CASPubMedPubMed Central Google Scholar
Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol.3, 24–29 (2001).This article shows that Hrd1/Der3 functions as a ubiquitin-ligase in ER-protein degradation. CASPubMed Google Scholar
Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem.276, 10663–10669 (2001). CASPubMed Google Scholar
Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci.112, 4123–4134 (1999). CASPubMed Google Scholar
Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol.151, 69–82 (2000). CASPubMedPubMed Central Google Scholar
Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA98, 14422–14427 (2001). CASPubMedPubMed Central Google Scholar
Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev.15, 2660–2674 (2001). CASPubMedPubMed Central Google Scholar
Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J.17, 5964–5973 (1998). CASPubMedPubMed Central Google Scholar
Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol.4, 134–139 (2002). CASPubMed Google Scholar
Riezman, H. The ins and outs of protein translocation. Science278, 1728–1729 (1997). CASPubMed Google Scholar
Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J.17, 3251–3257 (1998). CASPubMedPubMed Central Google Scholar
Huppa, J. B. & Ploegh, H. L. The α chain of the T cell antigen receptor is degraded in the cytosol. Immunity7, 113–122 (1997). CASPubMed Google Scholar
Yang, M., Omura, S., Bonifacino, J. S. & Weissman, A. M. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J. Exp. Med.187, 835–846 (1998). CASPubMedPubMed Central Google Scholar
Hirsch, C. & Ploegh, H. L. Intracellular targeting of the proteasome. Trends Cell Biol.10, 268–272 (2000). CASPubMed Google Scholar
Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R. Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell12, 4114–4128 (2001). CASPubMedPubMed Central Google Scholar
Rabinovich, E., Kerem, A., Frohlich, K. U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol.22, 626–634 (2002). CASPubMedPubMed Central Google Scholar
Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J.21, 615–621 (2002). CASPubMedPubMed Central Google Scholar
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell6, 1473–1484 (2000). CASPubMed Google Scholar
Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol.8, 65–71 (1998). CASPubMed Google Scholar
Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature388, 75–78 (1997). CASPubMed Google Scholar
Hitchcock, A. L. et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell12, 3226–3241 (2001). CASPubMedPubMed Central Google Scholar
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell107, 667–677 (2001). CASPubMed Google Scholar
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J.19, 2181–2192 (2000). CASPubMedPubMed Central Google Scholar
Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell101, 589–600 (2000). CASPubMed Google Scholar
Schmidt, M., Lupas, A. N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol.3, 584–591 (1999). CASPubMed Google Scholar
Langer, T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci.25, 247–251 (2000). CASPubMed Google Scholar
Dai, R. M. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature Cell Biol.3, 740–744 (2001). CASPubMed Google Scholar
Pollard, M. G., Travers, K. J. & Weissman, J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell1, 171–182 (1998). CASPubMed Google Scholar
Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell1, 161–170 (1998). CASPubMed Google Scholar