Plasticity and reprogramming of differentiated cells in amphibian regeneration (original) (raw)

References

  1. Dinsmore, C. E. A History of Regeneration Research (Cambridge Univ. Press, Cambridge, 1991).
    Google Scholar
  2. Brockes, J. P. Amphibian limb regeneration: rebuilding a complex structure. Science 276, 81–87 (1997).An overview of urodele regeneration that focuses on plasticity and positional identity.
    Article CAS PubMed Google Scholar
  3. Brockes, J. P., Kumar, A. & Velloso, C. P. Regeneration as an evolutionary variable. J. Anat. 199, 3–11 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  4. Pecorino, L. T., Entwistle, A. & Brockes, J. P. Activation of a single retinoic acid receptor isoform mediates proximodistal respecification. Curr. Biol. 6, 563–569 (1996).
    Article CAS PubMed Google Scholar
  5. Torok, M. A., Gardiner, D. M., Shubin, N. H. & Bryant, S. V. Expression of HoxD genes in developing and regenerating axolotl limbs. Dev. Biol. 200, 225–233 (1998).
    Article CAS PubMed Google Scholar
  6. Maden, M. Vitamin A and pattern formation in the regenerating limb. Nature 295, 672–675 (1982).
    Article CAS PubMed Google Scholar
  7. Nardi, J. B. & Stocum, D. L. Surface properties of regenerating limb cells: evidence for gradation along the proximodistal axis. Differentiation 25, 27–31 (1983).
    Article Google Scholar
  8. Raff, R. A. The Shape of Life (Univ. Chicago, Chicago, 1996).
    Book Google Scholar
  9. Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).
    Article CAS PubMed Google Scholar
  10. Alvarado, A. S. Regeneration in the metazoans: why does it happen? Bioessays 22, 578–590 (2000).This reviews the evolutionary questions about regeneration and its origins, such as why some animals regenerate but others apparently do not.
    Article CAS Google Scholar
  11. Goss, R. J. Principles of Regeneration (Academic, New York, 1969).
    Google Scholar
  12. Ghosh, S., Thorogood, P. & Ferretti, P. Regenerative capability of upper and lower jaws in the newt. Int. J. Dev. Biol. 38, 479–490 (1994).
    CAS PubMed Google Scholar
  13. Reyer, R. W. Regeneration of the lens in the amphibian eye. Quart. Rev. Biol. 29, 1–46 (1954).
    Article CAS PubMed Google Scholar
  14. Mitashov, V. I. Mechanisms of retina regeneration in urodeles. Int. J. Dev. Biol. 40, 833–844 (1996).
    CAS PubMed Google Scholar
  15. Oberpriller, J. O. & Oberpriller, J. C. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249–253 (1974).
    Article CAS PubMed Google Scholar
  16. Oberpriller, J. O., Oberpriller, J. C., Matz, D. G. & Soonpaa, M. H. Stimulation of proliferative events in the adult amphibian cardiac myocyte. Ann. NY Acad. Sci. 752, 30–46 (1995).
    Article CAS PubMed Google Scholar
  17. Soonpaa, M. H. & Field, L. J. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26 (1998).
    Article CAS PubMed Google Scholar
  18. Okada, T. S. Transdifferentiation (Clarendon, Oxford, 1991).
    Google Scholar
  19. Eguchi, G. Cellular and molecular background of wolffian lens regeneration. Cell Differ. Dev. 25, S147–S158 (1988).
    Article Google Scholar
  20. Eguchi, G., Abe, S. I. & Watanabe, K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc. Natl Acad. Sci. USA 71, 5052–5056 (1974).
    Article CAS PubMed PubMed Central Google Scholar
  21. Eguchi, G. & Okada, T. S. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc. Natl Acad. Sci. USA 70, 1495–1499 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  22. Tsonis, P. A. Limb Regeneration (Cambridge Univ. Press, Cambridge, 1996).
    Google Scholar
  23. Wallace, H. Vertebrate Limb Regeneration (Wiley and Sons, New York, 1981).
    Google Scholar
  24. Tanaka, E. M., Gann, A. A., Gates, P. B. & Brockes, J. P. Newt myotubes re-enter the cell cycle by phosphorylation of the retinoblastoma protein. J. Cell Biol. 136, 155–165 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  25. Tanaka, E. M., Drechsel, D. N. & Brockes, J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr. Biol. 9, 792–799 (1999).References 24 and 25 provide the first clear evidence that a urodele differentiated cell — the skeletal myotube — is intrinsically different from its mammalian counterpart.
    Article CAS PubMed Google Scholar
  26. Velloso, C. P., Simon, A. & Brockes, J. P. Mammalian postmitotic nuclei re-enter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr. Biol. 11, 855–858 (2001).
    Article CAS PubMed Google Scholar
  27. Kumar, A., Velloso, C. P., Imokawa, Y. & Brockes, J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev. Biol. 218, 125–136 (2000).
    Article CAS PubMed Google Scholar
  28. Lo, D. C., Allen, F. & Brockes, J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl Acad. Sci. USA 90, 7230–7234 (1993).This study found that implanted labelled myotubes underwent reversal of muscle differentiation in the limb blastema.
    Article CAS PubMed PubMed Central Google Scholar
  29. Velloso, C. P., Kumar, A., Tanaka, E. M. & Brockes, J. P. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 66, 239–246 (2000).
    Article CAS PubMed Google Scholar
  30. Echeverri, K., Clarke, J. D. & Tanaka, E. M. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev. Biol. 236, 151–164 (2001).
    Article CAS PubMed Google Scholar
  31. Steen, T. P. Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J. Exp. Zool. 167, 49–78 (1968).
    Article CAS PubMed Google Scholar
  32. Reyer, R. W., Woolfitt, R. A. & Withersty, L. T. Stimulation of lens regeneration from the newt dorsal iris when implanted into the blastema of the regenerating limb. Dev. Biol. 32, 258–281 (1973).
    Article CAS PubMed Google Scholar
  33. Ito, M., Hayashi, T., Kuroiwa, A. & Okamoto, M. Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev. Growth Differ. 41, 429–440 (1999).
    Article CAS PubMed Google Scholar
  34. Kim, W. S. & Stocum, D. L. Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev. Biol. 114, 170–179 (1986).
    Article CAS PubMed Google Scholar
  35. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).
    Article CAS PubMed Google Scholar
  36. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).
    Article CAS PubMed Google Scholar
  37. Aguayo, A. J., Epps, J., Charron, L. & Bray, G. M. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res. 104, 1–20 (1976).
    Article CAS PubMed Google Scholar
  38. Weinberg, H. J. & Spencer, P. S. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 113, 363–378 (1976).
    Article CAS PubMed Google Scholar
  39. Olwin, B. B. & Hauschka, S. D. Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J. Cell Biol. 107, 761–769 (1988).
    Article CAS PubMed Google Scholar
  40. Ferretti, P. & Brockes, J. P. Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J. Exp. Zool. 247, 77–91 (1988).
    Article CAS PubMed Google Scholar
  41. Schneider, J. W., Gu, W., Zhu, L., Mahdavi, V. & Nadal-Ginard, B. Reversal of terminal differentiation mediated by p107 in _Rb_−/− muscle cells. Science 264, 1467–1471 (1994).
    Article CAS PubMed Google Scholar
  42. Novitch, B. G., Mulligan, G. J., Jacks, T. & Lassar, A. B. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell Biol. 135, 441–456 (1996).
    Article CAS PubMed Google Scholar
  43. Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 10, 3051–3064 (1996).
    Article CAS PubMed Google Scholar
  44. Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. & Lassar, A. B. pRb is required for _MEF2_-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol. 9, 449–459 (1999).
    Article CAS PubMed Google Scholar
  45. Solari, F. et al. Multinucleated cells can continuously generate mononucleated cells in the absence of mitosis: a study of cells of the avian osteoclast lineage. J. Cell Sci. 108, 3233–3241 (1995).
    CAS PubMed Google Scholar
  46. Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109 (2000).This study showed that the expression of Msx-1 in mouse myotubes leads to the generation of mononucleate pluripotent progeny.
    Article CAS PubMed Google Scholar
  47. Hu, G., Lee, H., Price, S. M., Shen, M. M. & Abate-Shen, C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128, 2373–2384 (2001).
    CAS PubMed Google Scholar
  48. Song, K., Wang, Y. & Sassoon, D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360, 477–481 (1992).
    Article CAS PubMed Google Scholar
  49. Woloshin, P. et al. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell 82, 611–620 (1995).
    Article CAS PubMed Google Scholar
  50. Koshiba, K., Kuroiwa, A., Yamamoto, H., Tamura, K. & Ide, H. Expression of Msx genes in regenerating and developing limbs of axolotl. J. Exp. Zool. 282, 703–714 (1998).
    Article CAS PubMed Google Scholar
  51. Rosania, G. R. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nature Biotechnol. 18, 304–308 (2000).This study isolated a trisubstituted purine from a combinatorial library that induces cellularization of mouse myotubes.
    Article CAS Google Scholar
  52. Perez, O. D., Chang, Y. T., Rosania, G., Sutherlin, D. & Schultz, P. G. Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem. Biol. 9, 475–483 (2002).
    Article CAS PubMed Google Scholar
  53. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).
    Article CAS PubMed Google Scholar
  54. McGann, C. J., Odelberg, S. J. & Keating, M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl Acad. Sci. USA 98, 13699–13704 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  55. Agata, K. et al. Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development 118, 1025–1030 (1993).
    CAS PubMed Google Scholar
  56. Heber-Katz, E. The regenerating mouse ear. Semin. Cell Dev. Biol. 10, 415–419 (1999).
    Article CAS PubMed Google Scholar
  57. Clark, L. D., Clark, R. K. & Heber-Katz, E. A new murine model for mammalian wound repair and regeneration. Clin. Immunol. Immunopathol. 88, 35–45 (1998).
    Article CAS PubMed Google Scholar
  58. Leferovich, J. M. et al. Heart regeneration in adult MRL mice. Proc. Natl Acad. Sci. USA 98, 9830–9835 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  59. McBrearty, B. A., Clark, L. D., Zhang, X. M., Blankenhorn, E. P. & Heber-Katz, E. Genetic analysis of a mammalian wound-healing trait. Proc. Natl Acad. Sci. USA 95, 11792–11797 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  60. Bianco, P. & Robey, P. G. Stem cells in tissue engineering. Nature 414, 118–121 (2001).
    Article CAS PubMed Google Scholar
  61. Hughes, R. N. A Functional Biology of Clonal Animals (Chapman and Hall, London, 1989).
    Google Scholar
  62. Newth, D. R. New (and Better?) Parts for Old (eds Johnson, M. L., Abercrombie, M. & Fogg, G. E.) (Penguin, Middlesex, 1958).
    Google Scholar
  63. Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 141, 1583–1595 (1995).
    CAS PubMed PubMed Central Google Scholar
  64. Tosh, D. & Slack, J. M. How cells change their phenotype. Nature Rev. Mol. Cell Biol. 3, 187–194 (2002).
    Article CAS Google Scholar
  65. Tsai, R. Y., Kittappa, R. & McKay, R. D. Plasticity, niches, and the use of stem cells. Dev. Cell 2, 707–712 (2002).
    Article CAS PubMed Google Scholar
  66. Iten, L. & Bryant, S. V. Forelimb regeneration from different levels of amputation in the newt N. viridescens. Length, rate and stages. Wilhelm Roux Arch. Dev. Biol. 173, 263–282 (1973).
    Article Google Scholar

Download references