Ménage à trois in the human gut: interactions between host, bacteria and phages (original) (raw)
Rohwer, F., Prangishvili, D. & Lindell, D. Roles of viruses in the environment. Environ. Microbiol.11, 2771–2774 (2009). ArticlePubMed Google Scholar
Mills, S. et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes4, 4–16 (2013). ArticlePubMedPubMed Central Google Scholar
De Smet, J. et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J.10, 1823–1835 (2016). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol.7, 828–836 (2009). ArticleCASPubMed Google Scholar
Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J.11, 237–247 (2017). ArticleCASPubMed Google Scholar
Parfrey, L. W., Walters, W. A. & Knight, R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front. Microbiol.2, 153 (2011). ArticlePubMedPubMed Central Google Scholar
Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE8, e66019 (2013). ArticleCASPubMedPubMed Central Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012).
Hewitson, J. P. & Maizels, R. M. Vaccination against helminth parasite infections. Expert Rev. Vaccines13, 473–487 (2014). ArticleCASPubMed Google Scholar
Tlaskalova-Hogenova, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol.8, 110–120 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wilson, M. in Bacteriology of Humans: An Ecological Perspective 278–279 (Wiley-Blackwell, 2008). Google Scholar
Blaut, M. Ecology and physiology of the intestinal tract. Curr. Top. Microbiol. Immunol.358, 247–272 (2013). PubMed Google Scholar
Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature500, 585–588 (2013). ArticleCASPubMed Google Scholar
Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol.13, 321–335 (2013). ArticleCASPubMed Google Scholar
Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol.11, 227–238 (2013). ArticleCASPubMed Google Scholar
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006). A review that identifies possible ecological rules governing the diversity of the bacterial communities in the human gut. ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticlePubMed Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104, 13780–13785 (2007). ArticleCASPubMedPubMed Central Google Scholar
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature490, 55–60 (2012). ArticleCASPubMed Google Scholar
David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol.15, R89 (2014). This study provides a comprehensive time-series analysis of gut and oral bacterial communities in two healthy individuals over the course of 1 year. ArticleCASPubMedPubMed Central Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature489, 220–230 (2012). ArticleCASPubMedPubMed Central Google Scholar
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559–563 (2014). ArticleCASPubMed Google Scholar
Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell160, 447–460 (2015). This study details a comparison between the gut viromes of patients with IBD, showing disease-specific changes in virome diversity that are not explained by the changes in bacterial communities. ArticleCASPubMedPubMed Central Google Scholar
Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA112, 11941–11946 (2015). ArticleCASPubMedPubMed Central Google Scholar
Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA110, 20236–20241 (2013). This study shows that mice that are colonized by a specific bacterial community isolated from the human gut and are infected by phages have reproducible and non-simultaneous bacterial infection patterns. ArticleCASPubMedPubMed Central Google Scholar
Zhang, T. et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol.4, e3 (2006). ArticleCASPubMed Google Scholar
Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA110, 12450–12455 (2013). A temporal study of the healthy human gut virome over 2.5 years, which shows long-term stability of diversity in the gut virome and the rapid evolution of some long-term members of the gut virome. ArticleCASPubMedPubMed Central Google Scholar
Browne, H. P. et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature533, 543–546 (2016). ArticleCASPubMedPubMed Central Google Scholar
Myhrvold, C., Kotula, J. W., Hicks, W. M., Conway, N. J. & Silver, P. A. A distributed cell division counter reveals growth dynamics in the gut microbiota. Nat. Commun.6, 10039 (2015). ArticleCASPubMed Google Scholar
Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol.159, 367–373 (2008). ArticleCASPubMed Google Scholar
Sharon, I. et al. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res.23, 111–120 (2013). ArticleCASPubMedPubMed Central Google Scholar
Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4578–4585 (2011). ArticleCASPubMed Google Scholar
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA107, 11971–11975 (2010). ArticlePubMedPubMed Central Google Scholar
Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr.45, 1320–1328 (2000). Article Google Scholar
Weinbauer, M. G. & Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ. Microbiol.6, 1–11 (2004). ArticlePubMed Google Scholar
Mahana, D. et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med.8, 48 (2016). ArticleCASPubMedPubMed Central Google Scholar
Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell164, 859–871 (2016). ArticleCASPubMedPubMed Central Google Scholar
Harrison, E., Laine, A. L., Hietala, M. & Brockhurst, M. A. Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps. Proc. Biol. Sci.280, 20130937 (2013). ArticlePubMedPubMed Central Google Scholar
Gomez, P. & Buckling, A. Bacteria–phage antagonistic coevolution in soil. Science332, 106–109 (2011). This study in soil microcosms illustrates that bacteria–phage coevolution in soil leads to fluctuating selection dynamics between bacteria and phages. ArticleCASPubMed Google Scholar
Hall, A. R., Scanlan, P. D., Morgan, A. D. & Buckling, A. Host–parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett.14, 635–642 (2011). ArticlePubMed Google Scholar
van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev.80, 745–763 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lopez Pascua, L. et al. Higher resources decrease fluctuating selection during host–parasite coevolution. Ecol. Lett.17, 1380–1388 (2014). ArticlePubMedPubMed Central Google Scholar
Williamson, K. E., Radosevich, M., Smith, D. W. & Wommack, K. E. Incidence of lysogeny within temperate and extreme soil environments. Environ. Microbiol.9, 2563–2574 (2007). ArticleCASPubMed Google Scholar
Weinbauer, M. G., Brettar, I. & Hofle, M. G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol. Oceanogr.48, 1457–1465 (2003). Article Google Scholar
Silveira, C. B. & Rohwer, F. L. Piggyback-the-Winner in host-associated microbial communities. NPJ Biofilms Microbiomes2, 16010 (2016). ArticlePubMedPubMed Central Google Scholar
Lenski, R. E. Dynamics of interactions between bacteria and virulent bacteriophage. Adv. Microb. Ecol.10, 1–44 (1988). ArticleCAS Google Scholar
Knowles, B. et al. Lytic to temperate switching of viral communities. Nature531, 466–470 (2016). This study proposes the piggyback-the-winner model in host-associated microbial communities. ArticleCASPubMed Google Scholar
Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J.10, 2744–2754 (2016). ArticleCASPubMedPubMed Central Google Scholar
Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe3, 417–427 (2008). ArticleCASPubMedPubMed Central Google Scholar
Perez-Brocal, V. et al. Study of the viral and microbial communities associated with Crohn's disease: a metagenomic approach. Clin. Transl Gastroenterol.4, e36 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut57, 424–425 (2008). ArticleCASPubMed Google Scholar
Brockhurst, M. A., Morgan, A. D., Fenton, A. & Buckling, A. Experimental coevolution with bacteria and phage. The _Pseudomonas fluorescens–_Φ2 model system. Infect. Genet. Evol.7, 547–552 (2007). ArticleCASPubMed Google Scholar
Maranger, R. & Bird, D. F. Viral abundance in aquatic systems — a comparison between marine and fresh-waters. Mar. Ecol. Prog. Ser.121, 217–226 (1995). Article Google Scholar
Williamson, K. E., Radosevich, M. & Wommack, K. E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol.71, 3119–3125 (2005). ArticleCASPubMedPubMed Central Google Scholar
Majewska, J. et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses7, 4783–4799 (2015). ArticleCASPubMedPubMed Central Google Scholar
Miernikiewicz, P. et al. T4 phage tail adhesin Gp12 counteracts LPS-induced inflammation in vivo. Front. Microbiol.7, 1112 (2016). ArticlePubMedPubMed Central Google Scholar
Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA110, 10771–10776 (2013). This study shows that phage immunoglobulin-like proteins enable increased phage adherence to mucosal surfaces of metazoan hosts, including human intestinal cells, and provide a first line of defence against bacterial pathogens. ArticleCASPubMedPubMed Central Google Scholar
Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe10, 336–347 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rossmann, F. S. et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog.11, e1004653 (2015). ArticleCASPubMedPubMed Central Google Scholar
Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature541, 488–493 (2017). This study characterizes three phage genes that are involved in a phage-specific peptide communication system to coordinate the lysis–lysogeny decision of phages from the SPbeta group. ArticleCASPubMedPubMed Central Google Scholar
Jonczyk, E., Klak, M., Miedzybrodzki, R. & Gorski, A. The influence of external factors on bacteriophages — review. Folia Microbiol. (Praha)56, 191–200 (2011). ArticleCAS Google Scholar
Verthe, K., Possemiers, S., Boon, N., Vaneechoutte, M. & Verstraete, W. Stability and activity of an _Enterobacter aerogenes_-specific bacteriophage under simulated gastro-intestinal conditions. Appl. Microbiol. Biotechnol.65, 465–472 (2004). ArticleCASPubMed Google Scholar
Ma, Y. et al. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol.74, 4799–4805 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maura, D., Galtier, M., Le Bouguenec, C. & Debarbieux, L. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother.56, 6235–6242 (2012). ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, M. S. & Bae, J. W. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ. Microbiol.18, 1498–1510 (2016). ArticleCASPubMed Google Scholar
United Nations Children's Fund, World Health Organization & The World Bank. UNICEF–WHO–World Bank joint child malnutrition estimates. World Health Organizationhttp://www.who.int/nutgrowthdb/jme_unicef_who_wb.pdf (2012).
Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell152, 39–50 (2013). Thisin vitrostudy identifies the rapid effects of therapeutic compounds on the gene expression, physiology and community structure of healthy gut bacterial communities, including the higher transcription of prophage induction genes. ArticleCASPubMedPubMed Central Google Scholar
Pavlova, S. I. & Tao, L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[_a_]pyrene diol epoxide. Mutat. Res.466, 57–62 (2000). ArticleCASPubMed Google Scholar
Willner, D. et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4547–4553 (2011). ArticleCASPubMed Google Scholar
Taguer, M. & Maurice, C. F. The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: implications for clinical outcomes. Clin. Pharmacol. Ther.99, 588–599 (2016). ArticleCASPubMed Google Scholar
Mylon, S. E. et al. Influence of salts and natural organic matter on the stability of bacteriophage MS2. Langmuir26, 1035–1042 (2010). ArticleCASPubMed Google Scholar
Lenzi, L. J., Lucchesi, P. M., Medico, L., Burgan, J. & Kruger, A. Effect of the food additives sodium citrate and disodium phosphate on shiga toxin-producing Escherichia coli and production of stx-phages and Shiga toxin. Front. Microbiol.7, 992 (2016). ArticlePubMedPubMed Central Google Scholar
DeMarini, D. M. & Lawrence, B. K. Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks. Mutat. Res.267, 1–17 (1992). ArticleCASPubMed Google Scholar
Wegrzyn, G. & Wegrzyn, A. Genetic switches during bacteriophage λ development. Prog. Nucleic Acid Res. Mol. Biol.79, 1–48 (2005). ArticleCASPubMed Google Scholar
Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature499, 219–222 (2013). ArticleCASPubMedPubMed Central Google Scholar
Los, J. M., Los, M., Wegrzyn, G. & Wegrzyn, A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb. Pathog.47, 289–298 (2009). ArticleCASPubMed Google Scholar
Volkova, V. V., Lu, Z., Besser, T. & Grohn, Y. T. Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread. Appl. Environ. Microbiol.80, 4350–4362 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine4, 124–137 (2016). ArticlePubMedPubMed Central Google Scholar
Nailor, M. D. & Sobel, J. D. Antibiotics for Gram-positive bacterial infections: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, dalbavancin, and telavancin. Infect. Dis. Clin. North Am.23, 965–982 (2009). ArticlePubMed Google Scholar
Ross, A., Ward, S. & Hyman, P. More is better: selecting for broad host range bacteriophages. Front. Microbiol.7, 1352 (2016). ArticlePubMedPubMed Central Google Scholar
Bruttin, A. & Brussow, H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob. Agents Chemother.49, 2874–2878 (2005). ArticleCASPubMedPubMed Central Google Scholar
Galtier, M. et al. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ. Microbiol.18, 2237–2245 (2016). ArticleCASPubMed Google Scholar
Wright, A., Hawkins, C. H., Anggard, E. E. & Harper, D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol.34, 349–357 (2009). ArticleCASPubMed Google Scholar
Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA106, 4629–4634 (2009). ArticleCASPubMedPubMed Central Google Scholar
Libis, V. K. et al. Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth. Biol.3, 1003–1006 (2014). ArticleCASPubMed Google Scholar
Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet.32, 189–200 (2016). ArticleCASPubMedPubMed Central Google Scholar
Cooper, C., Khan Mirzaei, M. & Nilsson, A. S. Adapting drug approval pathways for bacteriophage-based therapeutics. Front. Microbiol.7, 1209 (2016). PubMedPubMed Central Google Scholar
Nale, J. Y. et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob. Agents Chemother.60, 968–981 (2016). ArticleCASPubMedPubMed Central Google Scholar
Abedon, S. T., Kuhl, S. J., Blasdel, B. G. & Kutter, E. M. Phage treatment of human infections. Bacteriophage1, 66–85 (2011). A review of historical and contemporary research on the use of phages to treat human infections. ArticlePubMedPubMed Central Google Scholar
Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol.9, 599–608 (2012). ArticleCASPubMed Google Scholar
Pirnay, J. P. et al. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm. Res.28, 934–937 (2011). ArticleCASPubMed Google Scholar
Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol.43, 3380–3389 (2005). ArticlePubMedPubMed Central Google Scholar
Bull, J. J. & Gill, J. J. The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages. Front. Microbiol.5, 618 (2014). ArticlePubMedPubMed Central Google Scholar
Khan Mirzaei, M. & Nilsson, A. S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE10, e0118557 (2015). ArticleCASPubMedPubMed Central Google Scholar
Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun.5, 4498 (2014). ArticleCASPubMed Google Scholar
Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J.2, 579–589 (2008). This study identifies phage-encoded repressors and transcriptional regulators of bacterial metabolism that enable the survival of the bacterial host in unfavourable environmental conditions in marine systems. ArticleCASPubMed Google Scholar
Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev.68, 560–602 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A. & Fisk, J. D. Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology500, 259–274 (2017). ArticleCASPubMed Google Scholar
Cenens, W., Makumi, A., Mebrhatu, M. T., Lavigne, R. & Aertsen, A. Phage–host interactions during pseudolysogeny: lessons from the Pid/dgo interaction. Bacteriophage3, e25029 (2013). ArticlePubMedPubMed Central Google Scholar
Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol.13, 641–650 (2015). ArticleCASPubMed Google Scholar
Reyesa, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA112, 11941–11946 (2015). ArticleCAS Google Scholar
Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol.13, 19–27 (1997). Article Google Scholar
Maurice, C. F. et al. Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons. ISME J.5, 831–842 (2011). ArticleCASPubMed Google Scholar
Bibby, K. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology. Microb. Ecol.67, 242–244 (2014). ArticlePubMed Google Scholar
Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol.8, 317–327 (2010). ArticleCASPubMed Google Scholar
Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol.11, 675–687 (2013). ArticleCASPubMed Google Scholar
Weitz, J. S., Hartman, H. & Levin, S. A. Coevolutionary arms races between bacteria and bacteriophage. Proc. Natl Acad. Sci. USA102, 9535–9540 (2005). ArticleCASPubMedPubMed Central Google Scholar