The evolution of chronic infection strategies in the α-proteobacteria (original) (raw)
La Scola, B., Barassi, L. & Raoult, D. A novel α-proteobacterium, Nordella oligomobilis gen. nov., sp. nov., isolated by using amoebal co-culture. Res. Microbiol.155, 47–51 (2004). ArticleCASPubMed Google Scholar
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science304, 66–74 (2004). Environmental sequencing of water samples from the Sargasso Sea reveals a predominance of α-proteobacterial species. ArticleCASPubMed Google Scholar
Andersson, S. G. E. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature396, 133–140 (1998). The first publication of an α-proteobacterial genome. One of the first studies to show the presence of pseudogenes and high contents of non-coding DNA in bacterial genomes. ArticleCASPubMed Google Scholar
Ogata, S. et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science293, 2093–2098 (2001). ArticleCASPubMed Google Scholar
Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel, a streamlined genome overrun by mobile genetic elements. PLoS Biol.2, 327–341 (2004). ArticleCAS Google Scholar
Alsmark, C. M. et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc. Natl Acad. Sci. USA101, 9716–9721 (2004). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, I. T. et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl Acad. Sci. USA99, 13148–13153 (2002). Describes theBrucella suisgenome and highlights similarities between the genomes of animal pathogens and plant symbionts. ArticleCASPubMedPubMed Central Google Scholar
DelVecchio, V. G. et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl Acad. Sci. USA99, 443–448 (2002). ArticleCASPubMed Google Scholar
Goodner, B. et al. Pathogen sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science294, 2323–2328 (2001). ArticleCASPubMed Google Scholar
Wood, D. W. et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294, 2317–2322 (2001). References 10 and 11 present the genome sequence of the plant pathogenAgrobacterium tumefaciens. ArticleCASPubMed Google Scholar
Galibert, F. et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science293, 668–672 (2001). Presents a genomic analysis of the plant symbiontSinorhizobium meliloti. ArticleCASPubMed Google Scholar
Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res.7, 331–338 (2000). ArticleCASPubMed Google Scholar
Kaneko, T. et al. Complete genome sequence of nitrogen-fixing symbiotic bacteria Bradyrhizobium meliloti. DNA Res.9, 189–197 (2002). ArticlePubMed Google Scholar
Olsen, G. J., Woese, C. R. & Overbeek, R. The winds of evolutionary change, breathing new life into microbiology. J. Bacteriol.176, 1–6 (1994). ArticleCASPubMedPubMed Central Google Scholar
Boussau, B., Karlberg, O., Frank, C., Legault, B. & Andersson, S. G. E. Computational inference of scenarios for α-proteobacterial genome evolution. Proc. Natl Acad. Sci. USA101, 9722–9727 (2004). The first quantitative analysis of the flux of genes during the evolution of the α-proteobacterial genomes. ArticleCASPubMedPubMed Central Google Scholar
Andersson, J. O. & Andersson, S. G. E. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol.16, 1178–1191 (1999). ArticleCASPubMed Google Scholar
Amiri, H., Davids, W. & Andersson, S. G. E. Birth and death of orphan genes in Rickettsia. Mol. Biol. Evol.20, 1575–1587 (2003). ArticleCASPubMed Google Scholar
Michaux-Charachon, S. et al. The Brucella genome at the beginning of the post-genomic era. Vet. Microbiol.90, 581–585 (2002). ArticleCASPubMed Google Scholar
Streit, W. R. et al. An evolutionary hot spot, the pNGR234b replicon of Rhizobium sp. strain NGR234. J. Bacteriol.186, 535–542 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wong, K. & Golding, G. B. A phylogenetic analysis of the pSymB replicon from the Sinorhizobium meliloti genome reveals a complex evolutionary history. Can. J. Microbiol.49, 269–280 (2003). ArticleCASPubMed Google Scholar
Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium legumes. Nature387, 394–401 (1997). ArticleCASPubMed Google Scholar
Barnett, M. J. et al. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl Acad. Sci. USA98, 9883–9888 (2001). ArticleCASPubMedPubMed Central Google Scholar
Uchiumi, T. et al. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol.186, 2439–2448 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, J. T. & Ronson, C. W. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl Acad. Sci. USA95, 5145–5149 (1998). A landmark paper in the discovery of symbiotic islands in rhizobia. ArticleCASPubMedPubMed Central Google Scholar
Gottfert, M. et al. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol.183, 1405–1412 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res.7, 331–338 (2000). ArticleCASPubMed Google Scholar
Guo, X. et al. Natural genomic design in Sinorhizobium meliloti, novel genomic architectures. Genome Res.13, 1810–1817 (2003). CASPubMedPubMed Central Google Scholar
Karlberg, E. O. & Andersson, S. G. E. Mitochondrial history and mRNA localization: is there a correlation? Nature Rev. Genet.4, 391–397 (2004). ArticleCAS Google Scholar
Goormachtig, S., Capoen, W., James, E. K. & Holsters, M. Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc. Natl Acad. Sci. USA101, 6303–6308 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gage, D. J. Infection and invasion of roots by symbiotic, nitrogen-fixing Rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev.68, 280–300 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smit, G., Swart, S., Lugtenberg, B. J. & Kijne, J. W. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol.6, 2897–2903 (1992). ArticleCASPubMed Google Scholar
Timmers, A. C., Auriac, M. C. & Truchet, G. Refined analysis of early symbiotic steps of the Rhizobium_–_Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development126, 3617–3628 (1999). CASPubMed Google Scholar
Robertson, J. G., Lyttleton, P., Bullivant, S. & Grayston, G. F. Membranes in lupin root nodules. I. The role of Golgi bodies in the biogenesis of infection threads and peribacteroid membranes. J. Cell. Sci.30, 129–149 (1978). CASPubMed Google Scholar
Oke, V. & Long, S. R. Bacteroid formation in the _Rhizobium_–legume symbiosis. Curr. Opin. Microbiol.2, 641–646 (1999). ArticleCASPubMed Google Scholar
Ardourel, M. et al. Rhizobium meliloti lipooligosaccharide nodulation factors, different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell6, 1357–1374 (1994). Provides some of the earliest evidence that Nod factors are key to infection, together with the prediction of distinct Nod factor receptors for nodule organogenesis and bacterial entry. ArticleCASPubMedPubMed Central Google Scholar
Walker, S. A. & Downie, J. A. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol. Plant Microbe Interact.13, 54–62 (2000). Article Google Scholar
Limpens, E. et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science302, 630–633 (2003). ArticleCASPubMed Google Scholar
Madsen, E. B. et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature425, 637–640 (2003). ArticleCASPubMed Google Scholar
Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature425, 585–592 (2003). References 39–41 describe the long-awaited identification of nod factor receptors. ArticleCASPubMed Google Scholar
Cullimore, J. & Denarie, J. How legumes select their sweet talking symbionts. Science302, 575–578 (2003). ArticleCASPubMed Google Scholar
Fraysse, N., Couderc, F. & Poinsot, V. Surface polysaccharide involvement in establishing the _Rhizobium_–legume symbiosis. Eur. J. Biochem.270, 1365–1380 (2003). ArticleCASPubMed Google Scholar
Pellock, B. J., Cheng, H. P. & Walker, G. C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol.182, 4310–4318 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dehio, C. Bartonella interactions with endothelial cells and erythrocytes. Trends Microbiol.9, 279–285 (2001). ArticleCASPubMed Google Scholar
Dehio, C. Recent progress in understanding _Bartonella_-induced vascular proliferation. Curr. Opin. Microbiol.6, 61–65 (2003). ArticleCASPubMed Google Scholar
Schulein, R. et al. Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med.193, 1077–1086 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, S. J. & Minnick, M. F. Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect. Immun.63, 1552–1562 (1995). CASPubMedPubMed Central Google Scholar
Dehio, C., Meyer, M., Berger, J., Schwarz, H. & Lanz, C. Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J. Cell Sci.110, 2141–2154 (1997). Description of the 'invasome', a novel mechanism used byBartonellato enter endothelial cells. CASPubMed Google Scholar
Verma, A., Davis, G. E. & Ihler, G. M. Infection of human endothelial cells with Bartonella bacilliformis is dependent on Rho and results in activation of Rho. Infect. Immun.68, 5960–5969 (2000). ArticleCASPubMedPubMed Central Google Scholar
Verma, A., Davis, G. E. & Ihler, G. M. Formation of stress fibres in human endothelial cells infected with Bartonella bacilliformis is associated with altered morphology, impaired migration and defects in cell morphogenesis. Cell. Microbiol.3, 169–180 (2001). ArticleCASPubMed Google Scholar
Verma, A. & Ihler, G. M. Activation of Rac, Cdc42 and other downstream signalling molecules by Bartonella bacilliformis during entry into human endothelial cells. Cell. Microbiol.4, 557–569 (2002). ArticleCASPubMed Google Scholar
Merz, A. J. & So, M. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol.16, 423–457 (2000). ArticleCASPubMed Google Scholar
Schmid, M. C. et al. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol. Microbiol.52, 81–92 (2004). Describes the multiple roles of theBartonellaVirB T4SS in the interaction with endothelial cells. ArticleCASPubMed Google Scholar
Kusumawati, A. et al. Early events and implication of F-actin and annexin I associated structures in the phagocytic uptake of Brucella suis by the J-774A.1 murine cell line and human monocytes. Microb. Pathog.28, 343–352 (2000). ArticleCASPubMed Google Scholar
Kim, S., Watarai, M., Makino, S. & Shirahata, T. Membrane sorting during swimming internalization of Brucella is required for phagosome trafficking decisions. Microb. Pathog.33, 225–237 (2002). ArticlePubMed Google Scholar
Naroeni, A. & Porte, F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun.70, 1640–1644 (2002). ArticleCASPubMedPubMed Central Google Scholar
Watarai, M., Makino, S., Fujii, Y., Okamoto, K. & Shirahata, T. Modulation of _Brucella_-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell. Microbiol.4, 341–355 (2002). ArticleCASPubMed Google Scholar
Porte, F., Naroeni, A., Ouahrani-Bettache, S. & Liautard, J. P. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome–lysosome fusion in murine macrophages. Infect. Immun.71, 1481–1490 (2003). First description of the role of lipid rafts in the entry ofBrucellainto macrophages. ArticleCASPubMedPubMed Central Google Scholar
Watarai, M. et al. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect. Immun.70, 4818–4825 (2002). ArticleCASPubMedPubMed Central Google Scholar
Manes, S., del Real, G. & Martinez, A. C. Pathogens, raft hijackers. Nature Rev. Immunol.3, 557–568 (2003). ArticleCAS Google Scholar
Castaneda-Roldan, E. I. et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell. Microbiol.6, 435–445 (2004). ArticleCASPubMed Google Scholar
Celli, J. & Gorvel, J. P. Organelle robbery, Brucella interactions with the endoplasmic reticulum. Curr. Opin. Microbiol.7, 93–97 (2004). ArticleCASPubMed Google Scholar
Caron, E. et al. Live Brucella spp. fail to induce tumor necrosis factor-α excretion upon infection of U937-derived phagocytes. Infect. Immun.62, 5267–5274 (1994). CASPubMedPubMed Central Google Scholar
Caron, E., Gross, A., Liautard, J. P. & Dornand, J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-α expression, active on human macrophage-like cells. J. Immunol.156, 2885–2893 (1996). CASPubMed Google Scholar
Jubier-Maurin, V. et al. Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor-α production during infection of human macrophages. Infect. Immun.69, 4823–4830 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sola-Landa, A. et al. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol.29, 125–138 (1998). ArticleCASPubMed Google Scholar
Guzman-Verri, C. et al. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc. Natl Acad. Sci. USA99, 12375–12380 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hackstadt, T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic1, 93–99 (2000). ArticleCASPubMed Google Scholar
Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles, a matter of life and death. Nature Cell Biol.1, 183–188 (1999). Article Google Scholar
Caron, E., Liautard, J. P. & Kohler, S. Differentiated U937 cells exhibit increased bactericidal activity upon LPS activation and discriminate between virulent and avirulent Listeria and Brucella species. J. Leukoc. Biol.56, 174–181 (1994). ArticleCASPubMed Google Scholar
Porte, F., Liautard, J. P. & Kohler, S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect. Immun.67, 4041–4047 (1999). Shows how phagosome acidification is essential forBrucellato survive in macrophages. CASPubMedPubMed Central Google Scholar
Boschiroli, M. L. et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl Acad. Sci. USA99, 1544–1549 (2002). TheB. suisVirB T4SS is one of the virulence factors induced by phagosome acidification. ArticleCASPubMedPubMed Central Google Scholar
Naroeni, A., Jouy, N., Ouahrani-Bettache, S., Liautard, J. P. & Porte, F. _Brucella suis_-impaired specific recognition of phagosomes by lysosomes due to phagosomal membrane modifications. Infect. Immun.69, 486–493 (2001). ArticleCASPubMedPubMed Central Google Scholar
Arenas, G. N., Staskevich, A. S., Aballay, A. & Mayorga, L. S. Intracellular trafficking of Brucella abortus in J774 macrophages. Infect. Immun.68, 4255–4263 (2000). ArticleCASPubMedPubMed Central Google Scholar
Celli, J. et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med.198, 545–556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L. & Gorvel, J. P. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun.66, 2387–2392 (1998). CASPubMedPubMed Central Google Scholar
Pizarro-Cerda, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun.66, 5711–5724 (1998). CASPubMedPubMed Central Google Scholar
Chaves-Olarte, E. et al. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol.4, 663–676 (2002). ArticleCASPubMed Google Scholar
Samartino, L. E. & Enright, F. M. Pathogenesis of abortion of bovine brucellosis. Comp. Immunol. Microbiol. Infect. Dis.16, 95–101 (1993). ArticleCASPubMed Google Scholar
Cheon, C. I., Lee, N. G., Siddique, A. B., Bal, A. K. & Verma, D. P. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J.12, 4125–4135 (1993). ArticleCASPubMedPubMed Central Google Scholar
Bartsev, A. V. et al. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol.134, 871–879 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci.112, 1697–1708 (1999). CASPubMed Google Scholar
Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature427, 457–461 (2004). ArticleCASPubMed Google Scholar
Weinrauch, Y. & Zychlinsky, A. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol.53, 155–187 (1999). ArticleCASPubMed Google Scholar
DeLeo, F. R. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis9, 399–413 (2004). ArticleCASPubMed Google Scholar
Clifton, D. R. et al. NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc. Natl Acad. Sci. USA95, 4646–4651 (1998). ArticleCASPubMedPubMed Central Google Scholar
Joshi, S. G., Francis, C. W., Silverman, D. J. & Sahni, S. K. Nuclear factor κB protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect. Immun.71, 4127–4136 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gross, A., Terraza, A., Ouahrani-Bettache, S., Liautard, J. P. & Dornand, J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect. Immun.68, 342–351 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kirby, J. E. & Nekorchuk, D. M. _Bartonella_-associated endothelial proliferation depends on inhibition of apoptosis. Proc. Natl Acad. Sci. USA99, 4656–4661 (2002). ArticleCASPubMedPubMed Central Google Scholar
Liberto, M. C. et al. In vitro Bartonella quintana infection modulates the programmed cell death and inflammatory reaction of endothelial cells. Diagn. Microbiol. Infect. Dis.45, 107–115 (2003). ArticlePubMedCAS Google Scholar
Binns, A. N. & Castantino, P. in The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria. (eds Spaink, H. P., Kondorosi, A. & Hooykaas, P. J. J.) 251–266 (Kluwer, The Netherlands, 1998). Google Scholar
Endre, G. et al. A receptor kinase gene regulating symbiotic nodule development. Nature417, 962–966 (2002). ArticleCASPubMed Google Scholar
Levy, J. et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science303, 1361–1364 (2004). ArticleCASPubMed Google Scholar
Ane, J. M. et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science303, 1364–1367 (2004). ArticleCASPubMed Google Scholar
Conley, T., Slater, L. & Hamilton, K. Rochalimaea species stimulate human endothelial cell proliferation and migration in vitro. J. Lab. Clin. Med.124, 521–528 (1994). References 98 and 99 describe the cloning of one of the legume genes that are required for both rhizobial and AM fungi infection. The possible evolution of rhizobial association from more ancient mycorrhizal associations is suggested. CASPubMed Google Scholar
Kempf, V. A. et al. Interaction of Bartonella henselae with endothelial cells results in rapid bacterial rRNA synthesis and replication. Cell. Microbiol.2, 431–441 (2000). ArticleCASPubMed Google Scholar
Kempf, V. A. et al. Evidence of a leading role for VEGF in _Bartonella henselae_-induced endothelial cell proliferations. Cell. Microbiol.3, 623–632 (2001). ArticleCASPubMed Google Scholar
Kempf, V. A., Hitziger, N., Riess, T. & Autenrieth, I. B. Do plant and human pathogens have a common pathogenicity strategy? Trends Microbiol.10, 269–275 (2002). ArticleCASPubMed Google Scholar
Martin, G., Juchault, P. & Legrand, J. J. Mise en évidence d'un microorganisme intracytoplasmique symbiote de l'Oniscoïde Armadillidium vulgare Latr dont la présence accompagne l'intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. C. R. Acad. Sci. Paris (série D)276, 2313–2316 (1973) (in French). Google Scholar
Martin, G. et al. The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur. J. Biochem.262, 727–736 (1999). ArticleCASPubMed Google Scholar
Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science295, 679–682 (2002). ArticleCASPubMed Google Scholar
Ohashi, N., Zhi, N., Lin, Q. & Rikihisa, Y. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun.70, 2128–2138 (2002). ArticleCASPubMedPubMed Central Google Scholar
Felek, S., Huang, H. & Rikihisa, Y. Sequence and expression analysis of virB9 of the type IV secretion system of Ehrlichia canis strains in ticks, dogs, and cultured cells. Infect. Immun.71, 6063–6067 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol.1, 137–149 (2003). ArticleCAS Google Scholar
Llosa, M. & O'Callaghan, D. Euroconference on the biology of type IV secretion processes: bacterial gates into the outer world. Mol. Microbiol.53, 1–8 (2004). ArticleCASPubMed Google Scholar
Vergunst, A. C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science290, 979–982 (2000). ArticleCASPubMed Google Scholar
Vergunst, A. C., van Lier, M. C., den Dulk-Ras, A. & Hooykaas, P. J. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol.133, 978–988 (2003). Use of the Cre recombinase as a reporter to demonstrate translocation of theAgrobacteriumvirulence proteins VirF and VirE2 through the VirB T4SS in the absence of T-DNA. ArticleCASPubMedPubMed Central Google Scholar
Schrammeijer, B., den Dulk-Ras, A., Vergunst, A. C., Jurado Jacome, E. & Hooykaas, P. J. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model, evidence for transport of a novel effector protein VirE3. Nucleic Acids Res.31, 860–868 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schrammeijer, B. et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol.11, 258–262 (2001). ArticleCASPubMed Google Scholar
O'Callaghan, D. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol.33, 1210–1220 (1999). ArticleCASPubMed Google Scholar
Seira, R., Comerci, D. J., Sanchez, D. O. & Ugalde, R. A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol.182, 4849–4855 (2000). Article Google Scholar
Comerci, D. J., Martinez-Lorenzo, M. J., Sieira, R., Gorvel, J. P. & Ugalde, R. A. Essential role of the VirB machinery in the maturation of the _Brucella abortus_-containing vacuole. Cell. Microbiol.3, 159–168 (2001). ArticleCASPubMed Google Scholar
Delrue, R. M. et al. Identification of Brucella spp. genes involved in intracellular trafficking. Cell. Microbiol.3, 487–497 (2001). ArticleCASPubMed Google Scholar
Boschiroli, M. L. et al. Type IV secretion and Brucella virulence. Vet. Microbiol.90, 341–348 (2002). ArticleCASPubMed Google Scholar
Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol.46, 1053–1067 (2002). ArticleCASPubMed Google Scholar
Seubert, A., Hiestand, R., de la Cruz, F. & Dehio, C. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol.49, 1253–1266 (2003). ArticleCASPubMed Google Scholar
Dehio, C. Molecular and cellular basis of Bartonella pathogenesis Annu. Rev. Microbiol.58, 365–390 (2004). ArticleCASPubMed Google Scholar
Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. & Ronson, C. W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol.54, 561–574 (2004). ArticleCASPubMed Google Scholar
Tzfira, T., Vaidya, M. & Citovsky, V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature431, 87–92 (2004). ArticleCASPubMed Google Scholar
Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M. B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol.50, 377–389 (2003). ArticleCASPubMed Google Scholar
Chen, L., Chen, Y., Wood, D. W. & Nester, E. W. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J. Bacteriol.184, 4838–4845 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Goni, I. et al. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet. Microbiol. 329–339 (2002).
Li, L. et al. A global pH sensor, Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc. Natl Acad. Sci. USA99, 12369–12374 (2002). References 70 and 127 decribe how a conserved two-component regulatory system regulates the expression of virulence factors involved in the interaction with mammalian and plant hosts. ArticleCASPubMedPubMed Central Google Scholar
Bhat, U. R., Carlson, R. W., Busch, M. & Mayer, H. Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the α-2 subgroup of Proteobacteria. Int. J. Syst. Bacteriol.41, 213–217 (1991). ArticleCASPubMed Google Scholar
Vedam, V., Haynes, J. G., Kannenberg, E. L., Carlson, R. W. & Sherrier, D. J. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Mol. Plant Microbe Interact.17, 283–291 (2004). ArticleCASPubMed Google Scholar
LeVier, K., Phillips, R. W., Grippe, V. K., Roop, R. M. & Walker, G. C. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science.287, 2492–2493 (2000). Shows that BacA is essential for bothBrucellaandSinorhizobiummaintenance in their host cells. Some of the clearest evidence for common symbiotic and pathogenic determinants. ArticleCASPubMed Google Scholar
Ferguson, G. P. et al. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl Acad. Sci. USA.101, 5012–5017 (2004). Shows that the BacA protein is required for the incorperation of VLCFAs into the lipid A ofBrucellaand Sinorhizobium. ArticleCASPubMedPubMed Central Google Scholar
Takeda, K. & Akira, S. Toll receptors and pathogen resistance. Cell. Microbiol.5, 143–153 (2003). ArticleCASPubMed Google Scholar
Matera, G. et al. Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis, a study on the human whole blood and a rat model. Int. Immunopharmacol.3, 853–864 (2003). ArticleCASPubMed Google Scholar
Zahringer, U. et al. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J. Biol. Chem.279, 21046–21054 (2004). ArticlePubMedCAS Google Scholar
Campos, M. A. et al. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect. Immun.72, 176–186 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kannenberg, E. L. & Carlson, R. W. Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol.39, 379–391 (2001). ArticleCASPubMed Google Scholar
Fernandez-Prada, C. M. et al. Interactions between Brucella melitensis and human phagocytes, bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun.71, 2110–2119 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jarvis, B. W., Harris, T. H., Qureshi, N. & Splitter, G. A. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infect. Immun.70, 7165–7168 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jimenez de Bagues, M. P., Terraza, A., Gross, A. & Dornand, J. Different responses of macrophages to smooth and rough Brucella spp., relationship to virulence. Infect. Immun.72, 2429–2433 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Breedveld, M. W. & Miller, K. J. Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol. Rev.58, 145–161 (1994). CASPubMedPubMed Central Google Scholar
Dylan, T. et al. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA83, 4403–4407 (1986). ArticleCASPubMedPubMed Central Google Scholar
Briones, G. et al. Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect. Immun.69, 4528–4535 (2001). ArticleCASPubMedPubMed Central Google Scholar
Roset, M. S., Ciocchini, A. E., Ugalde, R. A. & Inon de Iannino, N. Molecular cloning and characterization of cgt, the Brucella abortus cyclic β-1,2-glucan transporter gene, and its role in virulence. Infect. Immun.72, 2263–2271 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mah, T. F. et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature426, 306–310 (2003). ArticleCASPubMed Google Scholar
Gage, D. J. & Margolin, W. Hanging by a thread: invasion of legume plants by rhizobia. Curr. Opin. Microbiol.3, 613–617 (2000). ArticleCASPubMed Google Scholar
Oldroyd, G. E. & Downie, J. A. Calcium, kinases and nodulation signalling in legumes. Nature Rev. Mol. Cell Biol.5, 566–576 (2004). ArticleCAS Google Scholar
Bako, L., Umeda, M., Tiburcio, A. F., Schell, J. & Koncz, C. The VirD2 pilot protein of _Agrobacterium_-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc. Natl Acad. Sci. USA100, 10108–10113 (2003). ArticleCASPubMedPubMed Central Google Scholar
Duckely, M. & Hohn, B. The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol. Lett.223, 1–6 (2003). ArticleCASPubMed Google Scholar
Tzfira, T. & Citovsky, V. The _Agrobacterium_–plant cell interaction. Taking biology lessons from a bug. Plant Physiol.133, 943–947 (2003). ArticleCASPubMedPubMed Central Google Scholar
Citovsky, V. et al. Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J. Biol. Chem.279, 29528–29533 (2004) ArticleCASPubMed Google Scholar
Ausmees, N. et al. Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J. Bacteriol.186, 4774–4780 (2004). ArticleCASPubMedPubMed Central Google Scholar