Intracellular amyloid-β in Alzheimer's disease (original) (raw)
Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtliche Medizine64, 146–148 (1907). Google Scholar
Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120, 885–890 (1984). ArticleCASPubMed Google Scholar
Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA82, 4245–4249 (1985). ArticleCASPubMedPubMed Central Google Scholar
Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci. USA85, 4051–4055 (1988). ArticleCASPubMedPubMed Central Google Scholar
Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83, 4913–4917 (1986). ArticleCASPubMedPubMed Central Google Scholar
Ihara, Y., Nukina, N., Miura, R. & Ogawara, M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J. Biochem. (Tokyo)99, 1807–1810 (1986). ArticleCAS Google Scholar
Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA83, 4044–4048 (1986). ArticleCASPubMedPubMed Central Google Scholar
Rozemuller, J. M., Eikelenboom, P. & Stam, F. C. Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch. B Cell Pathol.51, 247–254 (1986). ArticleCAS Google Scholar
Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nature Med.12, 1005–1015 (2006). CASPubMed Google Scholar
Markesbery, W. R. Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med.23, 134–147 (1997). ArticleCASPubMed Google Scholar
McGeer, P. L., Rogers, J. & McGeer, E. G. Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J. Alzheimers Dis.9, 271–276 (2006). ArticleCASPubMed Google Scholar
Allinson, T. M., Parkin, E. T., Turner, A. J. & Hooper, N. M. ADAMs family members as amyloid precursor protein α-secretases. J. Neurosci. Res.74, 342–352 (2003). ArticleCASPubMed Google Scholar
Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science286, 735–741 (1999). ArticleCASPubMed Google Scholar
Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci.14, 419–427 (1999). ArticleCASPubMed Google Scholar
Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature402, 537–540 (1999). ArticleCASPubMed Google Scholar
Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature398, 513–517 (1999). ArticleCASPubMed Google Scholar
Steiner, H. et al. PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem.277, 39062–39065 (2002). ArticleCASPubMed Google Scholar
Francis, R. et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell3, 85–97 (2002). ArticleCASPubMed Google Scholar
Levitan, D. et al. PS1 N- and C-terminal fragments form a complex that functions in APP processing and Notch signaling. Proc. Natl Acad. Sci. USA98, 12186–12190 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature407, 48–54 (2000). ArticleCASPubMed Google Scholar
Kojro, E. & Fahrenholz, F. The non-amyloidogenic pathway: structure and function of α-secretases. Subcell. Biochem.38, 105–127 (2005). ArticleCASPubMed Google Scholar
Haass, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B. & Selkoe, D. J. β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem.268, 3021–3024 (1993). ArticleCASPubMed Google Scholar
Jarrett, J. T., Berger, E. P. & Lansbury, P. T. Jr. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry32, 4693–4697 (1993). ArticleCASPubMed Google Scholar
Younkin, S. G. The role of Aβ 42 in Alzheimer's disease. J. Physiol. Paris92, 289–292 (1998). ArticleCASPubMed Google Scholar
St George-Hyslop, P. H. & Petit, A. Molecular biology and genetics of Alzheimer's disease. C. R. Biol.328, 119–130 (2005). ArticleCASPubMed Google Scholar
Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nature Med.1, 1291–1296 (1995). ArticleCASPubMed Google Scholar
Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci.4, 887–893 (2001). ArticleCASPubMed Google Scholar
Guo, Q. et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med.5, 101–106 (1999). ArticleCASPubMed Google Scholar
Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet.13, 159–170 (2004). ArticleCASPubMed Google Scholar
Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet.38, 24–26 (2006). ArticleCASPubMed Google Scholar
Cabrejo, L. et al. Phenotype associated with APP duplication in five families. Brain129, 2966–2976 (2006). ArticlePubMed Google Scholar
Gyure, K. A., Durham, R., Stewart, W. F., Smialek, J. E. & Troncoso, J. C. Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome. Arch. Pathol. Lab. Med.125, 489–492 (2001). ArticleCASPubMed Google Scholar
Mori, C. et al. Intraneuronal Aβ42 accumulation in Down syndrome brain. Amyloid9, 88–102 (2002). ArticleCASPubMed Google Scholar
Grundke-Iqbal, I. et al. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc. Natl Acad. Sci. USA86, 2853–2857 (1989). ArticleCASPubMedPubMed Central Google Scholar
Blurton-Jones, M. & Laferla, F. M. Pathways by which Aβ facilitates tau pathology. Curr. Alzheimer Res.3, 437–448 (2006). ArticleCASPubMed Google Scholar
Takahashi, R. H. et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol.161, 869–1879 (2002). Using electron microscope analysis, this paper shows that in AD brains, intraneuronal Aβ accumulates within the multivesicular bodies. Article Google Scholar
D'Andrea, M. R. et al. The use of formic acid to embellish amyloid plaque detection in Alzheimer's disease tissues misguides key observations. Neurosci. Lett.342, 114–118 (2003). ArticleCASPubMed Google Scholar
Ohyagi, Y. et al. Intraneuronal amyloid β42 enhanced by heating but counteracted by formic acid. J. Neurosci. Methods159, 134–138 (2007). ArticleCASPubMed Google Scholar
Chui, D. H. et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature Med.5, 560–564 (1999). ArticleCASPubMed Google Scholar
Knobloch, M., Konietzko, U., Krebs, D. C. & Nitsch, R. M. Intracellular Aβ and cognitive deficits precede β-amyloid deposition in transgenic arcAβ mice. Neurobiol. Aging, 31 July 2006 (doi:10.1016/j.neurobiolaging.2006.06.019). Provides evidence linking intraneuronal Aβ accumulation to cognitive deficits in transgenic mice. ArticleCASPubMed Google Scholar
Kuo, Y. M. et al. The evolution of Aβ peptide burden in the APP23 transgenic mice: implications for Aβ deposition in Alzheimer disease. Mol. Med.7, 609–618 (2001). ArticleCASPubMedPubMed Central Google Scholar
Li, Q. X. et al. Intracellular accumulation of detergent-soluble amyloidogenic Aβ fragment of Alzheimer's disease precursor protein in the hippocampus of aged transgenic mice. J. Neurochem.72, 2479–2487 (1999). ArticleCASPubMed Google Scholar
Lord, A. et al. The Arctic Alzheimer mutation facilitates early intraneuronal Aβ aggregation and senile plaque formation in transgenic mice. Neurobiol. Aging27, 67–77 (2006). ArticleCASPubMed Google Scholar
Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci.26, 10129–10140 (2006). ArticleCASPubMedPubMed Central Google Scholar
Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron39, 409–421 (2003). Provides the earliestin vivoevidence that links intraneuronal Aβ to synaptic dysfunction, showing that intraneuronal Aβ accumulation leads to a profound LTP deficit in 3xTg-AD mice. ArticleCASPubMed Google Scholar
Wirths, O. et al. Intraneuronal Aβ accumulation precedes plaque formation in β-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett.306, 116–120 (2001). ArticleCASPubMed Google Scholar
Oddo, S., Caccamo, A., Smith, I. F., Green, K. N. & LaFerla, F. M. A dynamic relationship between intracellular and extracellular pools of Aβ. Am. J. Pathol.168, 184–194 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wegiel, J. et al. Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration. Acta Neuropathol. (Berl)113, 389–402 (2007). ArticleCAS Google Scholar
Kinoshita, A. et al. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J. Cell Sci.116, 3339–3346 (2003). ArticleCASPubMed Google Scholar
Breen, K. C., Bruce, M. & Anderton, B. H. β amyloid precursor protein mediates neuronal cell–cell and cell–surface adhesion. J. Neurosci. Res.28, 90–100 (1991). ArticleCASPubMed Google Scholar
Sabo, S. L., Ikin, A. F., Buxbaum, J. D. & Greengard, P. The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J. Cell Biol.153, 1403–1414 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xu, H., Greengard, P. & Gandy, S. Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J. Biol. Chem.270, 23243–23245 (1995). ArticleCASPubMed Google Scholar
Mizuguchi, M., Ikeda, K. & Kim, S. U. Differential distribution of cellular forms of β-amyloid precursor protein in murine glial cell cultures. Brain Res.584, 219–225 (1992). ArticleCASPubMed Google Scholar
Wertkin, A. M. et al. Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular β-amyloid or A4 peptides. Proc. Natl Acad. Sci. USA90, 9513–9517 (1993). ArticleCASPubMedPubMed Central Google Scholar
Martin, B. L. et al. Intracellular accumulation of β-amyloid in cells expressing the Swedish mutant amyloid precursor protein. J. Biol. Chem.270, 26727–26730 (1995). ArticleCASPubMed Google Scholar
Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet.39, 168–177 (2007). ArticleCASPubMed Google Scholar
Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J. & Younkin, S. G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science255, 728–730 (1992). ArticleCASPubMed Google Scholar
Koo, E. H. & Squazzo, S. L. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem.269, 17386–17389 (1994). ArticleCASPubMed Google Scholar
Perez, R. G. et al. Mutagenesis identifies new signals for β-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Aβ42. J. Biol. Chem.274, 18851–18856 (1999). ArticleCASPubMed Google Scholar
Cam, J. A. et al. The low density lipoprotein receptor-related protein 1B retains β-amyloid precursor protein at the cell surface and reduces amyloid-β peptide production. J. Biol. Chem.279, 29639–29646 (2004). ArticleCASPubMed Google Scholar
Busciglio, J., Gabuzda, D. H., Matsudaira, P. & Yankner, B. A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA90, 2092–2096 (1993). Provides strong evidence that Aβ in neurons is generated by the secretory pathway. ArticleCASPubMedPubMed Central Google Scholar
Cook, D. G. et al. Alzheimer's A β(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med.3, 1021–1023 (1997). ArticleCASPubMed Google Scholar
Lee, S. J. et al. A detergent-insoluble membrane compartment contains A β in vivo. Nature Med.4, 730–734 (1998). ArticleCASPubMed Google Scholar
Skovronsky, D. M., Doms, R. W. & Lee, V. M. Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture. J. Cell Biol.141, 1031–1039 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wild-Bode, C. et al. Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J. Biol. Chem.272, 16085–16088 (1997). ArticleCASPubMed Google Scholar
Hartmann, T. et al. Distinct sites of intracellular production for Alzheimer's disease A β40/42 amyloid peptides. Nature Med.3, 1016–10120 (1997). Shows that both Aβ40and Aβ42are generated intracellularly but at different sites. ArticleCASPubMed Google Scholar
Bu, G., Cam, J. & Zerbinatti, C. LRP in amyloid-β production and metabolism. Ann. N. Y. Acad. Sci.1086, 35–53 (2006). ArticleCASPubMed Google Scholar
Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nature Med.9, 907–913 (2003). ArticleCASPubMed Google Scholar
Nagele, R. G., D'Andrea, M. R., Anderson, W. J. & Wang, H. Y. Intracellular accumulation of β-amyloid1–42 in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience110, 199–211 (2002). Shows that Aβ binds to α7nAChR and suggests that it is subsequently internalized, thus providing a mechanism for intraneuronal Aβ accumulation. ArticleCASPubMed Google Scholar
Yazawa, H. et al. β amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J.15, 2454–2462 (2001). ArticleCASPubMed Google Scholar
Clifford, P. M. et al. Aβ peptides can enter the brain through a defective blood–brain barrier and bind selectively to neurons. Brain Res.1142, 223–236 (2007). ArticleCASPubMed Google Scholar
Wang, H. Y. et al. β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem.275, 5626–5632 (2000). ArticleCASPubMed Google Scholar
Oddo, S. et al. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease. Proc. Natl Acad. Sci. USA102, 3046–3051 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zerbinatti, C. V. et al. Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Aβ42 accumulation in amyloid model mice. J. Biol. Chem.281, 36180–36186 (2006). ArticleCASPubMed Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticleCASPubMed Google Scholar
Sasaki, N. et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease. Brain Res.888, 256–262 (2001). ArticleCASPubMed Google Scholar
Du Yan, S. et al. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl Acad. Sci. USA94, 5296–5301 (1997). ArticleCASPubMedPubMed Central Google Scholar
Iribarren, P., Zhou, Y., Hu, J., Le, Y. & Wang, J. M. Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. Immunol. Res.31, 165–176 (2005). ArticleCASPubMed Google Scholar
Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci.8, 1051–1058 (2005). ArticleCASPubMed Google Scholar
Bi, X., Gall, C. M., Zhou, J. & Lynch, G. Uptake and pathogenic effects of amyloid β peptide 1–42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience112, 827–840 (2002). ArticleCASPubMed Google Scholar
Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med.348, 1333–1341 (2003). ArticleCASPubMed Google Scholar
Minkeviciene, R., Banerjee, P. & Tanila, H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer's disease. J. Pharmacol. Exp. Ther.311, 677–682 (2004). ArticleCASPubMed Google Scholar
Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci.8, 79–84 (2005). ArticleCASPubMed Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). ArticleCASPubMed Google Scholar
Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006). ArticleCASPubMed Google Scholar
Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B. & Selkoe, D. J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry39, 10831–10839 (2000). Using cells from the human brain, this paper shows that Aβ oligomerization starts intraneuronally. ArticleCASPubMed Google Scholar
Oddo, S. et al. Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease. A link between Aβ and tau pathology. J. Biol. Chem.281, 1599–1604 (2006). ArticleCASPubMed Google Scholar
Takahashi, R. H. et al. Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci.24, 3592–3599 (2004). Shows that Aβ oligomers accumulate intraneuronally in AD brain. ArticleCASPubMedPubMed Central Google Scholar
Kim, S. I., Yi, J. S. & Ko, Y. G. Amyloid β oligomerization is induced by brain lipid rafts. J. Cell Biochem.99, 878–889 (2006). ArticleCASPubMed Google Scholar
Kawarabayashi, T. et al. Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci.24, 3801–3809 (2004). ArticleCASPubMedPubMed Central Google Scholar
Waschuk, S. A., Elton, E. A., Darabie, A. A., Fraser, P. E. & McLaurin, J. A. Cellular membrane composition defines Aβ-lipid interactions. J. Biol. Chem.276, 33561–33568 (2001). ArticleCASPubMed Google Scholar
Matsuzaki, K. et al. Inhibitors of amyloid β-protein aggregation mediated by GM1-containing raft-like membranes. Biochim. Biophys. Acta1768, 122–130 (2007). ArticleCASPubMed Google Scholar
Wakabayashi, M., Okada, T., Kozutsumi, Y. & Matsuzaki, K. GM1 ganglioside-mediated accumulation of amyloid β-protein on cell membranes. Biochem. Biophys. Res. Commun.328, 1019–1023 (2005). ArticleCASPubMed Google Scholar
Yamamoto, N. et al. Accelerated Aβ aggregation in the presence of GM1-ganglioside-accumulated synaptosomes of aged apoE4-knock-in mouse brain. FEBS Lett.569, 135–139 (2004). ArticleCASPubMed Google Scholar
D'Andrea, M. R., Nagele, R. G., Wang, H. Y., Peterson, P. A. & Lee, D. H. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology38, 120–134 (2001). Provides evidence suggesting that in the brains of patients with AD, intracellular Aβ accumulation may lead to neuronal death, and that after being released in the extracellular compartment, it can contribute to the formation of plaques. ArticleCASPubMed Google Scholar
Bahr, B. A. et al. Amyloid β protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. J. Comp. Neurol.397, 139–147 (1998). ArticleCASPubMed Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). ArticleCASPubMed Google Scholar
Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature408, 979–982 (2000). ArticleCASPubMed Google Scholar
Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43, 321–332 (2004). Shows that Aβ immunotherapy clears intraneuronal Aβ accumulation, which leads to the removal of tau deposits, thus linking intracellular Aβ and tau pathology. ArticleCASPubMed Google Scholar
Gouras, G. K., Almeida, C. G. & Takahashi, R. H. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's disease. Neurobiol. Aging26, 1235–1244 (2005). ArticleCASPubMed Google Scholar
Tseng, B. P., Kitazawa, M. & LaFerla, F. M. Amyloid β-peptide: the inside story. Curr. Alzheimer Res.1, 231–239 (2004). ArticleCASPubMed Google Scholar
Almeida, C. G., Takahashi, R. H. & Gouras, G. K. β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin–proteasome system. J. Neurosci.26, 4277–4288 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gregori, L., Fuchs, C., Figueiredo-Pereira, M. E., Van Nostrand, W. E. & Goldgaber, D. Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro. J. Biol. Chem.270, 19702–19708 (1995). ArticleCASPubMed Google Scholar
Oh, S. et al. Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech. Ageing Dev.126, 1292–1299 (2005). ArticleCASPubMed Google Scholar
Tseng, B. P., Green, K. N., Chan, J., Blurton-Jones, M. & LaFerla, F. Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging (in the press).
Manczak, M. et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet.15, 1437–1449 (2006). ArticleCASPubMed Google Scholar
Hansson, C. A. et al. Nicastrin, presenilin, APH-1, and PEN-2 form active γ-secretase complexes in mitochondria. J. Biol. Chem.279, 51654–51660 (2004). ArticleCASPubMed Google Scholar
Caspersen, C. et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J.19, 2040–2041 (2005). ArticleCASPubMed Google Scholar
Keil, U. et al. Mitochondrial dysfunction induced by disease relevant AβPP and tau protein mutations. J. Alzheimers Dis.9, 139–146 (2006). ArticlePubMed Google Scholar
Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron45, 675–688 (2005). Shows that intraneuronal Aβ accumulation is responsible for the onset of cognitive decline in the 3xTg-AD. ArticleCASPubMed Google Scholar
Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an _N_-methyl-D-aspartate receptor antagonist, AP5. Nature319, 774–776 (1986). ArticleCASPubMed Google Scholar
Gong, B. et al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell126, 775–788 (2006). ArticleCASPubMed Google Scholar
Green, K. N. et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-β and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci.27, 4385–4395 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, M. et al. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J. Nutr.135, 549–555 (2005). ArticleCASPubMed Google Scholar
Lim, G. P. et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci.25, 3032–3040 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gasparini, L. et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci.21, 2561–2570 (2001). ArticleCASPubMedPubMed Central Google Scholar
Billings, L. M., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Learning decreases Aβ*56 and tau pathology and ameliorates behavioral decline in 3xTg-AD mice. J. Neurosci.27, 751–761 (2007). ArticleCASPubMedPubMed Central Google Scholar
Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L. & LaFerla, F. M. Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer's disease. J. Neurosci.26, 9047–9056 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sparks, D. L. et al. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol.126, 88–94 (1994). ArticleCASPubMed Google Scholar
Misonou, H., Morishima-Kawashima, M. & Ihara, Y. Oxidative stress induces intracellular accumulation of amyloid β-protein (Aβ) in human neuroblastoma cells. Biochemistry39, 6951–6959 (2000). ArticleCASPubMed Google Scholar
Hasegawa, T. et al. Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: implications for the pathogenesis of Alzheimer's disease. J. Neurosci. Res.80, 869–876 (2005). ArticleCASPubMed Google Scholar
D'Andrea, M. R., Nagele, R. G., Wang, H. Y. & Lee, D. H. Consistent immunohistochemical detection of intracellular β-amyloid42 in pyramidal neurons of Alzheimer's disease entorhinal cortex. Neurosci. Lett.333, 163–166 (2002). ArticleCASPubMed Google Scholar
D'Andrea, M. R. et al. Lipofuscin and Aβ42 exhibit distinct distribution patterns in normal and Alzheimer's disease brains. Neurosci. Lett.323, 45–49 (2002). ArticleCASPubMed Google Scholar
LaFerla, F. M., Troncoso, J. C., Strickland, D. K., Kawas, C. H. & Jay, G. Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Aβ stabilization. J. Clin. Invest.100, 310–320 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mochizuki, A., Tamaoka, A., Shimohata, A., Komatsuzaki, Y. & Shoji, S. Aβ42-positive non-pyramidal neurons around amyloid plaques in Alzheimer's disease. Lancet355, 42–43 (2000). ArticleCASPubMed Google Scholar
Mendell, J. R., Sahenk, Z., Gales, T. & Paul, L. Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch. Neurol.48, 1229–1234 (1991). ArticleCASPubMed Google Scholar
Sarkozi, E., Askanas, V., Johnson, S. A., Engel, W. K. & Alvarez, R. B. β-Amyloid precursor protein mRNA is increased in inclusion-body myositis muscle. Neuroreport4, 815–818 (1993). ArticleCASPubMed Google Scholar
Askanas, V., Engel, W. K. & Alvarez, R. B. Enhanced detection of congo-red-positive amyloid deposits in muscle fibers of inclusion body myositis and brain of Alzheimer's disease using fluorescence technique. Neurology43, 1265–1267 (1993). ArticleCASPubMed Google Scholar
Kimura, N. et al. Age-related changes of intracellular Aβ in cynomolgus monkey brains. Neuropathol. Appl. Neurobiol.31, 170–180 (2005). ArticleCASPubMed Google Scholar
Martin, L. J., Pardo, C. A., Cork, L. C. & Price, D. L. Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am. J. Pathol.145, 1358–1381 (1994). CASPubMedPubMed Central Google Scholar
Cummings, B. J., Su, J. H., Cotman, C. W., White, R. & Russell, M. J. β-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer's disease. Neurobiol. Aging14, 547–560 (1993). ArticleCASPubMed Google Scholar
Torp, R. et al. Ultrastructural evidence of fibrillar β-amyloid associated with neuronal membranes in behaviorally characterized aged dog brains. Neuroscience96, 495–506 (2000). ArticleCASPubMed Google Scholar
Cruz, J. C. et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid β in vivo. J. Neurosci.26, 10536–10541 (2006). ArticleCASPubMedPubMed Central Google Scholar
Casas, C. et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ42 accumulation in a novel Alzheimer transgenic model. Am. J. Pathol.165, 1289–1300 (2004). Providesin vivoevidence that intraneuronal Aβ accumulation is toxic and leads to cell death. ArticleCASPubMedPubMed Central Google Scholar
Van Broeck, B. et al. Intraneuronal amyloid β and reduced brain volume in a novel APP T714I mouse model for Alzheimer's disease. Neurobiol. Aging 16 Nov 2006 (doi:10.1016/j.neurobiolaging.2006.10.016). ArticleCASPubMed Google Scholar
Shie, F. S., LeBoeuf, R. C. & Jin, L. W. Early intraneuronal Aβ deposition in the hippocampus of APP transgenic mice. Neuroreport14, 123–129 (2003). ArticleCASPubMed Google Scholar
Magrane, J. et al. Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J. Neurosci.25, 10960–10969 (2005). ArticleCASPubMedPubMed Central Google Scholar
Suo, Z. et al. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol. Aging 2 October 2006 (doi: 10.1016/j.neurobiolaging.2006.08.013). ArticleCASPubMed Google Scholar
Sugarman, M. C. et al. Inclusion body myositis-like phenotype induced by transgenic overexpression of βAPP in skeletal muscle. Proc. Natl Acad. Sci. USA99, 6334–6339 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kitazawa, M., Green, K. N., Caccamo, A. & LaFerla, F. M. Genetically augmenting Aβ42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. Am. J. Pathol.168, 1986–1997 (2006). ArticleCASPubMedPubMed Central Google Scholar
Moussa, C. E. et al. Transgenic expression of β-APP in fast-twitch skeletal muscle leads to calcium dyshomeostasis and IBM-like pathology. FASEB J.20, 2165–2167 (2006). ArticleCASPubMed Google Scholar
Echeverria, V. et al. Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the β-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience129, 583–592 (2004). ArticleCASPubMed Google Scholar
Tawil, R. & Griggs, R. C. Inclusion body myositis. Curr. Opin. Rheumatol.14, 653–657 (2002). ArticleCASPubMed Google Scholar
Askanas, V. & Engel, W. K. Inclusion-body myositis: a myodegenerative conformational disorder associated with Aβ, protein misfolding, and proteasome inhibition. Neurology66, S39–S48 (2006). ArticleCASPubMed Google Scholar