Complex brain networks: graph theoretical analysis of structural and functional systems (original) (raw)

References

  1. Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995).
    Google Scholar
  2. Swanson, L. W. Brain Architecture (Oxford Univ. Press, Oxford, 2003).
    Google Scholar
  3. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).
    CAS PubMed Google Scholar
  4. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).
    PubMed Google Scholar
  5. Bressler, S. L. Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 20, 288–304 (1995).
    CAS PubMed Google Scholar
  6. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).
    PubMed Google Scholar
  7. McIntosh, A. R. Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000).
    CAS PubMed Google Scholar
  8. Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).
    CAS PubMed Google Scholar
  9. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, New York, 2006).
    Google Scholar
  10. Strogatz, S. H. Exploring complex networks. Nature 410, 268–277 (2001).
    CAS PubMed Google Scholar
  11. Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). A scholarly review of the early literature on the physics of complex networks, with an emphasis on various types of scale-free and small-world connectivity.
    Google Scholar
  12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).
    Google Scholar
  13. Börner, K., Sanyal, S. & Vespignani, A. Network science. Annu. Rev. Inform. Sci. Technol. 41, 537–607 (2007).
    Google Scholar
  14. Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. USA 91, 5033–5037 (1994).
    CAS PubMed PubMed Central Google Scholar
  15. Amaral, L. A. N., Scala, A., Barthelemy, M. & Stanley, H. E. Classes of small-world networks. Proc. Natl Acad. Sci. USA 97, 11149–11152 (2000).
    CAS PubMed PubMed Central Google Scholar
  16. Amaral, L. A. N. & Ottino, J. M. Complex networks. Augmenting the framework for the study of complex systems. Eur. Phys. J. B 38, 147–162 (2004).
    CAS Google Scholar
  17. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).
    PubMed Google Scholar
  18. Watts, D. J. & Strogatz, S. H. Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998). This seminal paper on small-world networks demonstrated their ubiquitous occurrence in natural, social and technological systems.
    Article CAS PubMed Google Scholar
  19. Sporns, O., Chialvo, D., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).
    PubMed Google Scholar
  20. Bassett, D. S. & Bullmore, E. T. Small world brain networks. Neuroscientist 12, 512–523 (2006).
    PubMed Google Scholar
  21. Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317–2331 (2007).
    PubMed Google Scholar
  22. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlin. Biomed. Phys. 1, 3 (2007).
    Google Scholar
  23. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
    CAS PubMed PubMed Central Google Scholar
  24. Ravasz, E. & Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003).
    PubMed Google Scholar
  25. Barthélemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).
    Google Scholar
  26. Guimerà, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
    PubMed PubMed Central Google Scholar
  27. Guimerà, R., Mossa, S., Turtschi, A. & Amaral, L. A. The worldwide air transportation network: anomalous centrality, community structure and cities' global roles. Proc. Natl Acad. Sci. USA 102, 7794–7799 (2005).
    PubMed PubMed Central Google Scholar
  28. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).
    CAS PubMed PubMed Central Google Scholar
  29. Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003).
    CAS PubMed PubMed Central Google Scholar
  30. Braitenberg, V. & Schüz, A. Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).
    Google Scholar
  31. Hellwig, B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000).
    CAS PubMed Google Scholar
  32. Averbeck, B. B. & Seo, M. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050 (2008).
    PubMed PubMed Central Google Scholar
  33. Cherniak, C. Component placement optimization in the brain. J. Neurosci. 14, 2418–2427 (1994).
    CAS PubMed PubMed Central Google Scholar
  34. Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).
    CAS PubMed Google Scholar
  35. Klyachko, V. A. & Stevens, C. F. Connectivity optimization and the positioning of cortical areas. Proc. Natl Acad. Sci. USA 100, 7937–7941 (2003).
    CAS PubMed PubMed Central Google Scholar
  36. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).
    CAS PubMed Google Scholar
  37. Silberberg, G., Grillner, S., LeBeau, F. E. N., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541–551 (2005).
    CAS PubMed Google Scholar
  38. Humphries, M. D., Gurney, K. & Prescott, T. J. The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006).
    CAS PubMed Google Scholar
  39. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005). Presented recordings from multiple cortical neurons that revealed the small-world topology of cellular functional networks.
    PubMed PubMed Central Google Scholar
  40. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).
    CAS PubMed Google Scholar
  41. Lichtman, J. W., Livet, J. & Sanes, J. R. A technicolour approach to the connectome. Nature Rev. Neurosci. 9, 417–422 (2008).
    CAS Google Scholar
  42. Felleman, D. J. & van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
    CAS PubMed Google Scholar
  43. Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O'Neil, M. A. & Young, M. P. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).
    CAS PubMed Google Scholar
  44. Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Cereb. Cortex 10, 127–141 (2000). One of the first papers to describe small-world topological properties, and to investigate the relationship between topology and complex dynamics, in brain networks.
    CAS PubMed Google Scholar
  45. Hilgetag, C. C., Burns, G. A., O'Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 91–110 (2000).
    CAS PubMed PubMed Central Google Scholar
  46. Sporns, O. & Zwi, J. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).
    PubMed Google Scholar
  47. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006). A comprehensive analysis of the relationship between economical wiring and small-world topology of brain networks, and its evolutionary significance.
    PubMed PubMed Central Google Scholar
  48. Sporns, O. & Kötter, R. Motifs in brain networks. PLoS Biol. 2, 1910–1918 (2004).
    CAS Google Scholar
  49. Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).
    PubMed PubMed Central Google Scholar
  50. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comp. Biol. 1, e42 (2005). This review article argued for the fundamental importance of structural connectivity in cognitive neuroscience and proposed an effort to systematically collect data on structural connections in the human brain.
    Google Scholar
  51. He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007). This study was the first to derive a structural network of the human brain on the basis of correlations in cortical grey matter thickness measured using MRI.
    PubMed Google Scholar
  52. Wright, I. C. et al. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9, 366–378 (1999).
    CAS PubMed Google Scholar
  53. Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18, 2374–2381 (2008).
    PubMed PubMed Central Google Scholar
  54. Iturria-Medina, Y. et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36, 645–660 (2007).
    CAS PubMed Google Scholar
  55. Iturria-Medina, Y., Sotero, R. C., Canales-Rodriguez, E. J., Aleman-Gomez, Y. & Melie-Garcia, L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064–1076 (2008).
    PubMed Google Scholar
  56. Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 20 Jun 2008 (doi:10.1093/cercor/bhn102).
    PubMed PubMed Central Google Scholar
  57. Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).
    PubMed Google Scholar
  58. Hagmann, P. et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007).
    PubMed PubMed Central Google Scholar
  59. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008). This paper demonstrated the existence of modules, hubs and a structural core in the human anatomical network derived from DTI.
    PubMed PubMed Central Google Scholar
  60. Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl Acad. Sci. USA 103, 1563–1568 (2006).
    CAS PubMed PubMed Central Google Scholar
  61. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).
    PubMed Google Scholar
  62. Alkire, M. T., Hudetz, A. G. & Tononi, G. Consciousness and anesthesia. Science 322, 876–880 (2008).
    CAS PubMed PubMed Central Google Scholar
  63. Stephan, K. E. et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 111–126 (2000).
    CAS PubMed PubMed Central Google Scholar
  64. McIntosh, A. R. et al. Network analysis of cortical visual pathways mapped with PET. J. Neurosci. 14, 655–666 (1994).
    CAS PubMed PubMed Central Google Scholar
  65. Bullmore, E. T. et al. How good is good enough in path analysis of fMRI data? Neuroimage 17, 573–582 (2002).
    PubMed Google Scholar
  66. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).
    CAS PubMed Google Scholar
  67. Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl Acad. Sci. USA 101, 9849–9854 (2004).
    CAS PubMed PubMed Central Google Scholar
  68. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).
    PubMed Google Scholar
  69. Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).
    PubMed Google Scholar
  70. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. T. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006). This paper presented one of the first detailed analyses of small-world brain functional networks derived from human fMRI data.
    CAS PubMed PubMed Central Google Scholar
  71. Ferrarini, L. et al. Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 1 Oct 2008 (doi:10.1002/hbm.20663).
    PubMed Google Scholar
  72. Meunier, D., Achard, S., Morcom, A. & Bullmore, E. Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2008).
    PubMed Google Scholar
  73. Latora, V. & Marchiori, M. Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). The first formulation of the economical small-world concept and its key parameters: topological efficiency and connection cost.
    CAS PubMed Google Scholar
  74. Latora, V. & Marchiori, M. Economic small-world behavior in weighted networks. Eur. Phys. J. B 32, 249–263 (2003).
    CAS Google Scholar
  75. Achard, S. & Bullmore, E. T. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).
    PubMed PubMed Central Google Scholar
  76. Bullmore, E. T. et al. Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23, S234–S249 (2004).
    PubMed Google Scholar
  77. Fair, D. A. et al. Development of distinct cortical networks through segregation and integration. Proc. Natl Acad. Sci. USA 104, 13507–13512 (2007).
    CAS PubMed PubMed Central Google Scholar
  78. Stam, C. J. & van Dijk, B. W. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163, 236–251 (2002).
    Google Scholar
  79. Stam, C. J. Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network? Neurosci. Lett. 355, 25–28 (2004).
    CAS PubMed Google Scholar
  80. Micheloyannis, S. et al. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum. Brain Mapp. 30, 200–208 (2009).
    PubMed Google Scholar
  81. Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. T. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl Acad. Sci. USA 103, 19518–19523 (2006). This study provides evidence for fractal or scale-invariant small-world networks across multiple frequency ranges and for their reconfiguration during cognitive tasks.
    CAS PubMed PubMed Central Google Scholar
  82. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Ilmoniemi, R. J. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).
    CAS PubMed PubMed Central Google Scholar
  83. Maxim, V. et al. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 25, 141–158 (2005).
    PubMed Google Scholar
  84. Achard, S., Bassett, D. S., Meyer-Lindenberg, A. & Bullmore, E. T. Fractal connectivity of long memory networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036104 (2008).
    PubMed Google Scholar
  85. Schwarz, A., Gozzi, A. & Bifone, A. Community structure and modularity in networks of correlated brain activity. Magn. Reson. Imaging 26, 914–920 (2008).
    PubMed Google Scholar
  86. Yu, S., Huang, D., Singer, W. & Nikolic, D. A small world of neuronal synchrony. Cereb. Cortex 18, 2891–2901 (2008). This paper was one of the first to apply graph theoretical techniques to map the topology of functionally characterized cortical neuronal circuits.
    PubMed PubMed Central Google Scholar
  87. Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).
    PubMed Google Scholar
  88. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).
    CAS PubMed PubMed Central Google Scholar
  89. Bettencourt, L. M., Stephens, G. J., Ham, M. I. & Gross, G. W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 021915 (2007).
    PubMed Google Scholar
  90. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999). This landmark paper was the first to describe the scale-free organization of many complex networks and proposed a simple growth rule for their formation.
    PubMed Google Scholar
  91. Van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).
    CAS PubMed Google Scholar
  92. Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).
    CAS Google Scholar
  93. Alvarez, V. A. & Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).
    CAS PubMed Google Scholar
  94. Grutzendler, J., Kasthuri, N. & Gan, W.-B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).
    CAS PubMed Google Scholar
  95. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).
    CAS Google Scholar
  96. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).
    CAS PubMed Google Scholar
  97. Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active CA3 networks. J. Neurosci. 27, 517–528 (2007).
    CAS PubMed PubMed Central Google Scholar
  98. Valencia, M., Martinerie, J., Dupont, S. & Chavez, M. Dynamic small-world behaviour in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 050905 (2008).
    CAS PubMed Google Scholar
  99. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001). Using quantitative metabolic and haemodynamic measures, this paper first proposed the existence of an organized pattern of resting or default-mode brain activity.
    CAS PubMed PubMed Central Google Scholar
  100. Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001).
    CAS Google Scholar
  101. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).
    CAS Google Scholar
  102. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).
    CAS PubMed Google Scholar
  103. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).
    CAS PubMed PubMed Central Google Scholar
  104. Koch, M. A., Norris, D. G. & Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16, 241–250 (2002).
    PubMed Google Scholar
  105. Greicius, M., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2008).
    PubMed PubMed Central Google Scholar
  106. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA (in the press).
  107. Park, C. H., Kim, S. Y., Kim, Y.-H. & Kim, K. Comparison of the small-world topology between anatomical and functional connectivity in the human brain. Physica A 387, 5958–5962 (2008).
    Google Scholar
  108. Galán, R. F. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE 3, e2148 (2008).
    PubMed PubMed Central Google Scholar
  109. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007). This paper used a large-scale computational model to relate topological features of structural and functional brain networks at multiple timescales.
    CAS PubMed PubMed Central Google Scholar
  110. Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2, 115–120 (2008).
    CAS PubMed PubMed Central Google Scholar
  111. Zhou, C., Zemanova, L., Zamora, G., Hilgetag, C. C. & Kurths, J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006).
    PubMed Google Scholar
  112. Müller-Linow, M., Hilgetag, C. C. & Hütt, M.-T. Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4, e1000190 (2008).
    PubMed PubMed Central Google Scholar
  113. Kaiser, M., Görner, M. & Hilgetag, C. C. Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110 (2007).
    Google Scholar
  114. Percha, B., Dzakpasu, R., Zochowski, M. & Parent, J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 031909 (2005).
    PubMed Google Scholar
  115. Siri, B., Quoy, M., Delord, B., Cessac, B. & Berry, H. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J. Physiol. (Paris) 101, 136–148 (2007).
    Google Scholar
  116. Catani, M. & fftyche, D. H. The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005).
    PubMed Google Scholar
  117. Supekar, K., Menon, V., Rubin, D., Musen, M. & Greicius, M. D. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 4, e1000100 (2008).
    PubMed PubMed Central Google Scholar
  118. Stam, C. J., Jones, B. E., Nolte, G., Breakspear, M. & Scheltens, P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex 17, 92–99 (2007). This paper was one of the first to use graph theory to demonstrate disease-related differences in brain functional network topology.
    CAS PubMed Google Scholar
  119. He, Y., Chen, Z. & Evans, A. C. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J. Neurosci. 28, 8148–8159 (2008).
    Google Scholar
  120. Stam, C. J. et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 24 Oct 2008 (doi:10.1093/brain/awn262).
    PubMed Google Scholar
  121. Liu, Y. et al. Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008).
    PubMed Google Scholar
  122. Micheloyannis, S. et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87, 60–66 (2006).
    PubMed Google Scholar
  123. Rubinov, M. et al. Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 10 Dec 2007 (doi:10.1002/hbm.20517).
    PubMed Central Google Scholar
  124. Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).
    CAS PubMed PubMed Central Google Scholar
  125. Ponten, S. C., Bartolomei, F. & Stam, C. J. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 118, 918–927 (2007).
    CAS PubMed Google Scholar
  126. Kramer, M. A., Kolaczyk, E. D. & Kirsch, H. E. Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 173–186 (2008).
    PubMed Google Scholar
  127. Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18, 033119 (2008).
    PubMed Google Scholar
  128. Wang, L. et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 24 Jan 2008 (doi:10.1002/hbm.20530).
    CAS PubMed Central Google Scholar
  129. De Vico Fallani, F. et al. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum. Brain Mapp. 28, 1334–1346 (2007).
    PubMed Google Scholar
  130. Smit, D. J., Stam, C. J., Posthuma, D., Boomsma, D. I. & de Geus, E. J. Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29, 1368–1378 (2008).
    PubMed Google Scholar
  131. Schmitt, J. E. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb. Cortex 18, 1737–1747 (2008).
    CAS PubMed PubMed Central Google Scholar
  132. Sporns, O. Small-world connectivity, motif composition and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006).
    PubMed Google Scholar
  133. Kaiser, M., Robert, M., Andras, P. & Young, M. P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25, 3185–3192 (2007).
    PubMed Google Scholar
  134. Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).
    PubMed PubMed Central Google Scholar
  135. He, B. J., Shulman, G. L., Snyder, A. Z. & Corbetta, M. The role of impaired neuronal communication in neurological disorders. Curr. Opin. Neurol. 20, 655–660 (2007).
    PubMed Google Scholar
  136. He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).
    CAS PubMed Google Scholar
  137. Dyhrfjeld-Johnsen, J. et al. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J. Neurophysiol. 97, 1566–1587 (2007). This paper used biologically realistic computational modelling to study the effects of epileptogenic cellular changes on the topology and dynamics of functional networks in the rat hippocampus.
    PubMed Google Scholar
  138. Srinivas, K. V., Jain, R., Saurav, S. & Sikdar, S. K. Small-world network topology of hippocampal neuronal network is lost, in an in vivo glutamate injury model of epilepsy. Eur. J. Neurosci. 25, 3276–3286 (2007).
    PubMed Google Scholar
  139. Netoff, T. I., Clewley, R., Arno, S., Keck, T. & White, J. A. Epilepsy in small-world networks. J. Neurosci. 24, 8075–8083 (2004).
    CAS PubMed PubMed Central Google Scholar
  140. Honey, G. D. et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain 126, 1767–1781 (2003).
    CAS PubMed Google Scholar
  141. Schwarz, A. J., Gozzi, A., Reese, T., Heidbreder, C. A. & Bifone, A. Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to _d_-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn. Reson. Imaging 25, 277811–277820 (2007).
    Google Scholar
  142. Stoffers, D., Bosboom, J. L., Wolters, E. Ch., Stam, C. J. & Berendse, H. W. Dopaminergc modulation of cortico-cortical functional connectivity in Parkinson's disease: an MEG study. Exp. Neurol. 213, 191–195 (2008).
    CAS PubMed Google Scholar
  143. Bressler, S. & Kelso, J. A. S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001).
    PubMed Google Scholar
  144. Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).
    PubMed Google Scholar
  145. Shin, C. W. & Kim, S. Self-organized criticality and scale-free properties in emergent functional neural networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 045101 (2006).
    PubMed Google Scholar
  146. Kitzbichler, M., Smith, M., Sorensen, C. & Bullmore, E. Broadband criticality of human brain network synchronization. PLoS Comput. Biol. (in the press).
  147. Wang, J. et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum. Brain Mapp. 22 Jul 2008 (doi:10.1002/hbm.20623).
    PubMed Google Scholar
  148. Roebroeck, A., Formisano, E. & Goebel, R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230–242 (2005).
    PubMed Google Scholar
  149. Bressler, S. L., Tang, W., Sylvester, C., Shulman, G. & Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).
    CAS PubMed PubMed Central Google Scholar
  150. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
    CAS PubMed Google Scholar
  151. Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).
    Google Scholar
  152. Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).
    Google Scholar
  153. Milgram, S. The small world problem. Psychol. Today 1, 61–67 (1967).
    Google Scholar
  154. Humphries, M. D. & Gurney, K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS ONE 3, e0002051 (2008).
    PubMed Google Scholar
  155. Harary, F. Graph Theory (Perseus, Reading, Massachusetts, 1969).
    Google Scholar
  156. Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736).
    Google Scholar
  157. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications (Cambridge Univ. Press, 1994).
    Google Scholar
  158. Sporns, O. in Diffusion MRI: from Quantitative Measurement to In-Vivo Neuroanatomy (eds Johansen-Berg, H. & Behrens, T.) 309–332 (Academic, London, 2009).
    Google Scholar

Download references