Myelination and the trophic support of long axons (original) (raw)
Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA103, 12138–12143 (2006). CASPubMedPubMed Central Google Scholar
Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science280, 1610–1613 (1998). CASPubMed Google Scholar
Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genet.33, 366–374 (2003). CASPubMed Google Scholar
Kassmann, C. M. et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genet.39, 969–976 (2007). CASPubMed Google Scholar
Yin, X. et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J. Neurosci.18, 1953–1962 (1998). CASPubMedPubMed Central Google Scholar
Zalc, B. & Colman, D. R. Origins of vertebrate success. Science288, 271–272 (2000). CASPubMed Google Scholar
Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated nerve fibres in the CNS. Prog. Neurobiol.40, 319–384 (1993). CASPubMed Google Scholar
Hildebrand, C., Bowe, C. M. & Remahl, I. N. Myelination and myelin sheath remodelling in normal and pathological PNS nerve fibres. Prog. Neurobiol.43, 85–141 (1994). CASPubMed Google Scholar
Perkins, G. A. et al. Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J. Struct. Biol.161, 469–480 (2008). CASPubMed Google Scholar
Rosenbluth, J. Multiple functions of the paranodal junction of myelinated nerve fibers. J. Neurosci. Res.87, 3250–3258 (2009). CASPubMed Google Scholar
Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia56, 1532–1540 (2008). PubMed Google Scholar
Fields, R. D. Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. Neuroscientist14, 540–543 (2008). PubMedPubMed Central Google Scholar
Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol.17, 533–540 (2007). CASPubMed Google Scholar
Trapp, B. D. & Nave, K. A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci.31, 247–269 (2008). CASPubMed Google Scholar
Schiffmann, R. & van der Knaap, M. S. The latest on leukodystrophies. Curr. Opin. Neurol.17, 187–192 (2004). CASPubMed Google Scholar
Suter, U. & Scherer, S. S. Disease mechanisms in inherited neuropathies. Nature Rev. Neurosci.4, 714–726 (2003). CAS Google Scholar
Ferguson, B., Matyszak, M. K., Esiri, M. M. & Perry, V. H. Axonal damage in acute multiple sclerosis lesions. Brain120, 393–399 (1997). PubMed Google Scholar
Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338, 278–285 (1998). CASPubMed Google Scholar
Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain125, 551–561 (2002). PubMed Google Scholar
Nave, K. A., Sereda, M. W. & Ehrenreich, H. Mechanisms of disease: inherited demyelinating neuropathies — from basic to clinical research. Nature Clin. Pract. Neurol.3, 453–464 (2007). CAS Google Scholar
Scherer, S. S. & Wrabetz, L. Molecular mechanisms of inherited demyelinating neuropathies. Glia56, 1578–1589 (2008). PubMedPubMed Central Google Scholar
Pareyson, D., Scaioli, V. & Laura, M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromolecular Med.8, 3–22 (2006). CASPubMed Google Scholar
Griffin, J. W. & Watson, D. F. Axonal transport in neurological disease. Ann. Neurol.23, 3–13 (1988). CASPubMed Google Scholar
Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci.29, 518–527 (2006). CASPubMed Google Scholar
Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci.25, 313–319 (2002). CASPubMed Google Scholar
Smith, K. J. & Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol.1, 232–241 (2002). CASPubMed Google Scholar
Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol.8, 280–291 (2009). CASPubMed Google Scholar
Waxman, S. G. Ions, energy and axonal injury: towards a molecular neurology of multiple sclerosis. Trends Mol. Med.12, 192–195 (2006). CASPubMed Google Scholar
Craner, M. J. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA101, 8168–8173 (2004). CASPubMedPubMed Central Google Scholar
Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J. Neurosci.12, 430–439 (1992). CASPubMedPubMed Central Google Scholar
Stys, P. K. Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J. Cereb. Blood Flow Metab.18, 2–25 (1998). CASPubMed Google Scholar
Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature438, 1167–1171 (2005). CASPubMed Google Scholar
Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature439, 988–992 (2006). CASPubMed Google Scholar
Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann. Neurol.65, 151–159 (2009). CASPubMedPubMed Central Google Scholar
Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann. Neurol.65, 160–166 (2009). CASPubMedPubMed Central Google Scholar
Newman, T. A. et al. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain124, 2203–2214 (2001). CASPubMed Google Scholar
de Waegh, S. M., Lee, V. M. & Brady, S. T. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell68, 451–463 (1992). CASPubMed Google Scholar
Sanchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci.16, 5095–5105 (1996). CASPubMedPubMed Central Google Scholar
Inoue, Y., Nakamura, R., Mikoshiba, K. & Tsukada, Y. Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia. Brain Res.219, 85–94 (1981). CASPubMed Google Scholar
Shine, H. D., Readhead, C., Popko, B., Hood, L. & Sidman, R. L. Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J. Neurochem.58, 342–349 (1992). CASPubMed Google Scholar
Rosenbluth, J. Central myelin in the mouse mutant shiverer. J. Comp. Neurol.194, 639–648 (1980). CASPubMed Google Scholar
Andrews, H. et al. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J. Neurosci. Res.83, 1533–1539 (2006). CASPubMed Google Scholar
Brady, S. T. et al. Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci.19, 7278–7288 (1999). CASPubMedPubMed Central Google Scholar
Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nature Neurosci.8, 468–475 (2005). CASPubMed Google Scholar
Saher, G. et al. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J. Neurosci.29, 6094–6104 (2009). CASPubMedPubMed Central Google Scholar
Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron18, 59–70 (1997). CASPubMed Google Scholar
Edgar, J. M. et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J. Cell Biol.166, 121–131 (2004). CASPubMedPubMed Central Google Scholar
Edgar, J. M. et al. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia57, 1815–1824 (2009). PubMed Google Scholar
Rosenbluth, J., Nave, K. A., Mierzwa, A. & Schiff, R. Subtle myelin defects in PLP-null mice. Glia54, 172–182 (2006). PubMed Google Scholar
Yin, X. et al. Evolution of a neuroprotective function of central nervous system myelin. J. Cell Biol.172, 469–478 (2006). CASPubMedPubMed Central Google Scholar
Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest.113, 231–242 (2004). CASPubMedPubMed Central Google Scholar
Tarrade, A. et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet.15, 3544–3558 (2006). CASPubMed Google Scholar
Rasband, M. N. et al. CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia50, 86–90 (2005). PubMed Google Scholar
Garcia-Fresco, G. P. et al. Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc. Natl Acad. Sci. USA103, 5137–5142 (2006). CASPubMedPubMed Central Google Scholar
Higuchi, M. et al. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J. Neurosci.25, 9434–9443 (2005). CASPubMedPubMed Central Google Scholar
Yazawa, I. et al. Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron45, 847–859 (2005). CASPubMed Google Scholar
Zoller, I. et al. Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J. Neurosci.28, 9741–9754 (2008). PubMedPubMed Central Google Scholar
Montag, D. et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron13, 229–246 (1994). CASPubMed Google Scholar
Li, C. et al. Myelination in the absence of myelin-associated glycoprotein. Nature369, 747–750 (1994). CASPubMed Google Scholar
Nguyen, T. et al. Axonal protective effects of the myelin-associated glycoprotein. J. Neurosci.29, 630–637 (2009). CASPubMedPubMed Central Google Scholar
Zhou, L. & Griffin, J. W. Demyelinating neuropathies. Curr. Opin. Neurol.16, 307–313 (2003). PubMed Google Scholar
Marrosu, M. G. et al. Charcot-Marie-Tooth disease type 2 associated with mutation of the myelin protein zero gene. Neurology50, 1397–1401 (1998). CASPubMed Google Scholar
Laura, M. et al. Rapid progression of late onset axonal Charcot-Marie-Tooth disease associated with a novel MPZ mutation in the extracellular domain. J. Neurol. Neurosurg. Psychiatry78, 1263–1266 (2007). PubMedPubMed Central Google Scholar
Sousa, A. D. & Bhat, M. A. Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons. Neuron Glia Biol.3, 169–178 (2007). PubMedPubMed Central Google Scholar
Kirkpatrick, L. L., Witt, A. S., Payne, H. R., Shine, H. D. & Brady, S. T. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J. Neurosci.21, 2288–2297 (2001). CASPubMedPubMed Central Google Scholar
Uschkureit, T., Sporkel, O., Stracke, J., Bussow, H. & Stoffel, W. Early onset of axonal degeneration in double (plp−/−mag−/−) and hypomyelinosis in triple (plp−/−mbp−/−mag−/−) mutant mice. J. Neurosci.20, 5225–5233 (2000). CASPubMedPubMed Central Google Scholar
Du, Y. & Dreyfus, C. F. Oligodendrocytes as providers of growth factors. J. Neurosci. Res.68, 647–654 (2002). CASPubMed Google Scholar
Wilkins, A., Majed, H., Layfield, R., Compston, A. & Chandran, S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J. Neurosci.23, 4967–4974 (2003). CASPubMedPubMed Central Google Scholar
McGrail, K. M., Phillips, J. M. & Sweadner, K. J. Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J. Neurosci.11, 381–391 (1991). CASPubMedPubMed Central Google Scholar
Young, E. A. et al. Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Ann. Neurol.63, 428–435 (2008). PubMed Google Scholar
Tachikawa, M. et al. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron–glial relationship for brain energy homeostasis. Eur. J. Neurosci.20, 144–160 (2004). PubMed Google Scholar
Brady, S. T. & Lasek, R. J. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell23, 515–523 (1981). CASPubMed Google Scholar
Oblinger, M. M., Foe, L. G., Kwiatkowska, D. & Kemp, R. G. Phosphofructokinase in the rat nervous system: regional differences in activity and characteristics of axonal transport. J. Neurosci. Res.21, 25–34 (1988). CASPubMed Google Scholar
Yuan, A., Mills, R. G., Bamburg, J. R. & Bray, J. J. Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cell. Mol. Neurobiol.19, 733–744 (1999). CASPubMed Google Scholar
Galbraith, D. A. & Watts, D. C. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients. Comparison of normal humans and patients with Duchenne muscular dystrophy. Biochem. J.191, 63–70 (1980). CASPubMedPubMed Central Google Scholar
Kuehl, L. & Sumsion, E. N. Turnover of several glycolytic enzymes in rat liver. J. Biol. Chem.245, 6616–6623 (1970). CASPubMed Google Scholar
Medori, R., Autilio-Gambetti, L., Monaco, S. & Gambetti, P. Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc. Natl Acad. Sci. USA82, 7716–7720 (1985). CASPubMedPubMed Central Google Scholar
Spencer, P. S., Sabri, M. I., Schaumburg, H. H. & Moore, C. L. Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Ann. Neurol.5, 501–507 (1979). CASPubMed Google Scholar
Morland, C., Henjum, S., Iversen, E. G., Skrede, K. K. & Hassel, B. Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain. Neurochem. Int.50, 703–709 (2007). CASPubMed Google Scholar
Brinster, R. L. Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim. Biophys. Acta110, 439–441 (1965). CASPubMed Google Scholar
Selak, I., Skaper, S. D. & Varon, S. Pyruvate participation in the low molecular weight trophic activity for central nervous system neurons in glia-conditioned media. J. Neurosci.5, 23–28 (1985). CASPubMedPubMed Central Google Scholar
Suh, S. W., Aoyama, K., Matsumori, Y., Liu, J. & Swanson, R. A. Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes54, 1452–1458 (2005). CASPubMed Google Scholar
Hertz, L., Peng, L. & Dienel, G. A. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab.27, 219–249 (2007). CASPubMed Google Scholar
Dringen, R., Wiesinger, H. & Hamprecht, B. Uptake of L-lactate by cultured rat brain neurons. Neurosci. Lett.163, 5–7 (1993). CASPubMed Google Scholar
Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA91, 10625–10629 (1994). CASPubMedPubMed Central Google Scholar
Chih, C. P. & Roberts, E. L. Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J. Cereb. Blood Flow Metab.23, 1263–1281 (2003). CASPubMed Google Scholar
Allen, N. J., Karadottir, R. & Attwell, D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci.25, 848–859 (2005). CASPubMedPubMed Central Google Scholar
Magistretti, P. J. Neuron-glia metabolic coupling and plasticity. J. Exp. Biol.209, 2304–2311 (2006). CASPubMed Google Scholar
Wender, R. et al. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci.20, 6804–6810 (2000). CASPubMedPubMed Central Google Scholar
Brown, A. M., Wender, R. & Ransom, B. R. Metabolic substrates other than glucose support axon function in central white matter. J. Neurosci. Res.66, 839–843 (2001). CASPubMed Google Scholar
Baltan, S. Surviving anoxia: a tale of two white matter tracts. Crit. Rev. Neurobiol.18, 95–103 (2006). CASPubMed Google Scholar
Butt, A. M., Colquhoun, K. & Berry, M. Confocal imaging of glial cells in the intact rat optic nerve. Glia10, 315–322 (1994). CASPubMed Google Scholar
Orthmann-Murphy, J. L., Freidin, M., Fischer, E., Scherer, S. S. & Abrams, C. K. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J. Neurosci.27, 13949–13957 (2007). CASPubMedPubMed Central Google Scholar
Robinson, S. R., Hampson, E. C., Munro, M. N. & Vaney, D. I. Unidirectional coupling of gap junctions between neuroglia. Science262, 1072–1074 (1993). CASPubMed Google Scholar
Rash, J. E. et al. Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J. Comp. Neurol.388, 265–292 (1997). CASPubMed Google Scholar
Uhlenberg, B. et al. Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am. J. Hum. Genet.75, 251–260 (2004). CASPubMedPubMed Central Google Scholar
Orthmann-Murphy, J. L. et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain132, 426–438 (2009). PubMed Google Scholar
Odermatt, B. et al. Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J. Neurosci.23, 4549–4559 (2003). CASPubMedPubMed Central Google Scholar
Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. & Paul, D. L. Connexins are critical for normal myelination in the central nervous system. J. Neurosci.23, 5963–5973 (2003). CASPubMedPubMed Central Google Scholar
Menichella, D. M. et al. Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J. Neurosci.26, 10984–10991 (2006). CASPubMedPubMed Central Google Scholar
Lutz, S. E. et al. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci.29, 7743–7752 (2009). CASPubMedPubMed Central Google Scholar
Black, J. A., Foster, R. E. & Waxman, S. G. Rat optic nerve: freeze-fracture studies during development of myelinated axons. Brain Res.250, 1–20 (1982). CASPubMed Google Scholar
Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. _N_-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol.81, 89–131 (2007). CASPubMedPubMed Central Google Scholar
Jalil, M. A. et al. Reduced _N_-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J. Biol. Chem.280, 31333–31339 (2005). CASPubMed Google Scholar
Tekkok, S. B., Brown, A. M., Westenbroek, R., Pellerin, L. & Ransom, B. R. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res.81, 644–652 (2005). CASPubMed Google Scholar
Einheber, S., Bhat, M. A. & Salzer, J. L. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. Neuron Glia Biol.2, 165–174 (2006). PubMedPubMed Central Google Scholar
Roussarie, J. P., Ruffie, C. & Brahic, M. The role of myelin in Theiler's virus persistence in the central nervous system. PLoS Pathog.3, e23 (2007). PubMedPubMed Central Google Scholar
Ransom, B. R., Butt, A. M. & Black, J. A. Ultrastructural identification of HRP-injected oligodendrocytes in the intact rat optic nerve. Glia4, 37–45 (1991). CASPubMed Google Scholar
Butt, A. M. & Ransom, B. R. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia2, 470–475 (1989). CASPubMed Google Scholar
Hochachka, P. W. Intracellular convection, homeostasis and metabolic regulation. J. Exp. Biol.206, 2001–2009 (2003). CASPubMed Google Scholar
Butt, A. M. & Jenkins, H. G. Morphological changes in oligodendrocytes in the intact mouse optic nerve following intravitreal injection of tumour necrosis factor. J. Neuroimmunol.51, 27–33 (1994). CASPubMed Google Scholar
Werner, H. B. et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci.27, 7717–7730 (2007). CASPubMedPubMed Central Google Scholar
Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating a-tubulin. J. Neurosci.27, 2606–2616 (2007). PubMedPubMed Central Google Scholar
Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. & Gow, A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res.32, 187–195 (2007). CASPubMed Google Scholar
North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell11, 437–444 (2003). CASPubMed Google Scholar
Bifulco, M., Laezza, C., Stingo, S. & Wolff, J. 2′,3′-Cyclic nucleotide 3′-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl Acad. Sci. USA99, 1807–1812 (2002). CASPubMedPubMed Central Google Scholar
Lee, J., Gravel, M., Zhang, R., Thibault, P. & Braun, P. E. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J. Cell Biol.170, 661–673 (2005). CASPubMedPubMed Central Google Scholar
Takenaka, T. et al. Fatty acids as an energy source for the operation of axoplasmic transport. Brain Res.972, 38–43 (2003). CASPubMed Google Scholar
Kassmann, C. M. & Nave, K. A. Oligodendroglial impact on axonal function and survival – a hypothesis. Curr. Opin. Neurol.21, 235–241 (2008). PubMed Google Scholar
Lasek, R. J., Gainer, H. & Przybylski, R. J. Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc. Natl Acad. Sci. USA71, 1188–1192 (1974). CASPubMedPubMed Central Google Scholar
Gainer, H., Tasaki, I. & Lasek, R. J. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J. Cell Biol.74, 524–530 (1977). CASPubMed Google Scholar
Lasek, R. J., Gainer, H. & Barker, J. L. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis. J. Cell Biol.74, 501–523 (1977). CASPubMedPubMed Central Google Scholar
Duncan, A., Ibrahim, M., Berry, M. & Butt, A. M. Transfer of horseradish peroxidase from oligodendrocyte to axon in the myelinating neonatal rat optic nerve: artefact or transcellular exchange? Glia17, 349–355 (1996). CASPubMed Google Scholar
Court, F. A., Hendriks, W. T., Macgillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci.28, 11024–11029 (2008). CASPubMedPubMed Central Google Scholar
Hildebrand, C. & Waxman, S. G. Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J. Comp. Neurol.224, 25–37 (1984). CASPubMed Google Scholar
Edgar, J. M. et al. Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease. EMBO Mol. Med.2, 42–50 (2010). CASPubMedPubMed Central Google Scholar
Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp. Neurol.435, 241–248 (2001). CASPubMed Google Scholar
McQuarrie, I. G., Brady, S. T. & Lasek, R. J. Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiol. Aging10, 359–365 (1989). CASPubMed Google Scholar
Verdu, E., Ceballos, D., Vilches, J. J. & Navarro, X. Influence of aging on peripheral nerve function and regeneration. J. Peripher. Nerv. Syst.5, 191–208 (2000). CASPubMed Google Scholar
Stokin, G. B. & Goldstein, L. S. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem.75, 607–627 (2006). CASPubMed Google Scholar
Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron40, 41–52 (2003). CASPubMed Google Scholar
Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci.2, 50–56 (1999). CASPubMed Google Scholar
Schweigreiter, R., Roots, B. I., Bandtlow, C. E. & Gould, R. M. Understanding myelination through studying its evolution. Int. Rev. Neurobiol.73, 219–273 (2006). CASPubMed Google Scholar
Chen, S. et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nature Neurosci.6, 1186–1193 (2003). CASPubMed Google Scholar
Salzer, J. L. Polarized domains of myelinated axons. Neuron40, 297–318 (2003). CASPubMed Google Scholar