Astrocyte barriers to neurotoxic inflammation (original) (raw)
Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron81, 229–248 (2014). CASPubMedPubMed Central Google Scholar
Goverman, J. Autoimmune T cell responses in the central nervous system. Nature Rev. Immunol.9, 393–407 (2009). CAS Google Scholar
Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Rev. Immunol.12, 623–635 (2012). CAS Google Scholar
Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Rev. Neurosci.15, 300–312 (2014). CAS Google Scholar
Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron60, 430–440 (2008). CASPubMed Google Scholar
Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol.119, 7–35 (2010). PubMed Google Scholar
Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia50, 427–434 (2005). PubMed Google Scholar
Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci.32, 638–647 (2009). CASPubMedPubMed Central Google Scholar
Kang, W. & Hebert, J. M. Signaling pathways in reactive astrocytes, a genetic perspective. Mol. Neurobiol.43, 147–154 (2011). CASPubMedPubMed Central Google Scholar
Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett.565, 23–29 (2014). CASPubMed Google Scholar
Sofroniew, M. V. Reactive astrocytes in neural repair and protection. Neuroscientist5, 400–407 (2005). Google Scholar
Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci.5, 146–156 (2004). CAS Google Scholar
Hamby, M. E. & Sofroniew, M. V. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics7, 494–506 (2010). CASPubMedPubMed Central Google Scholar
Verkhratsky, A. et al. Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro4, e00082 (2012). PubMedPubMed Central Google Scholar
Bianchi, M. G., Bardelli, D., Chiu, M. & Bussolati, O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell. Mol. Life Sci.71, 2001–2015 (2014). CASPubMed Google Scholar
Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol.8, 279–289 (2008). CAS Google Scholar
Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). CASPubMed Google Scholar
Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science327, 291–295 (2010). CASPubMedPubMed Central Google Scholar
Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol.28, 12–18 (2007). CASPubMed Google Scholar
Owens, T., Bechmann, I. & Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol.67, 1113–1121 (2008). PubMed Google Scholar
Broadwell, R. D. & Sofroniew, M. V. Serum proteins by-pass the blood brain barrier for extracellular entry to the CNS. Exp. Neurol.120, 246–263 (1993). Google Scholar
Engelhardt, B. & Coisne, C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS8, 4 (2011). PubMedPubMed Central Google Scholar
Wilson, E. H., Weninger, W. & Hunter, C. A. Trafficking of immune cells in the central nervous system. J. Clin. Invest.120, 1368–1379 (2010). CASPubMedPubMed Central Google Scholar
Kawano, H. et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res.349, 169–180 (2012). PubMedPubMed Central Google Scholar
Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci.33, 12870–12886 (2013). CASPubMedPubMed Central Google Scholar
Norton, W.T., Aquino, D.A., Hozumi, I., Chiu, F.C. & Brosnan, C.F. Quantitative aspects of reactive gliosis: a review. Neurochem. Res.17, 877–885 (1992). CASPubMed Google Scholar
Bush, T. G. et al. Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron23, 297–308 (1999). This early transgenic loss-of-function study unexpectedly reveals that newly proliferated, scar-forming astrocytes restrict the spread of inflammatory cells after CNS damage. CASPubMed Google Scholar
Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell93, 189–201 (1998). CASPubMed Google Scholar
Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci.24, 2143–2155 (2004). This transgenic loss-of-function study shows that newly proliferated, scar-forming astrocytes have important functions in protecting adjacent neural tissue and thereby help to improve outcome after CNS injury. CASPubMedPubMed Central Google Scholar
Li, L. et al. Protective role of reactive astrocytes in brain ischemia. J. Cereb. Blood Flow Metab.28, 468–481 (2008). PubMed Google Scholar
Voskuhl, R. R. et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci.29, 11511–11522 (2009). CASPubMedPubMed Central Google Scholar
Toft-Hansen, H., Fuchtbauer, L. & Owens, T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia59, 166–176 (2011). PubMed Google Scholar
Liu, Z. et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia62, 2022–2033 (2014). PubMedPubMed Central Google Scholar
Brosnan, C. F. & Raine, C. S. The astrocyte in multiple sclerosis revisited. Glia61, 453–465 (2013). PubMed Google Scholar
Eddleston, M. & Mucke, L. Molecular profile of reactive astrocytes — implications for their role in neurological disease. Neuroscience54, 15–36 (1993). CASPubMed Google Scholar
Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci.32, 6391–6410 (2012). This study provides evidence for large-scale differences in transcriptome profiles of reactive astrocytes responding to different stimuli such as stroke or the bacterial protein LPS. CASPubMedPubMed Central Google Scholar
Hamby, M. E. et al. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci.32, 14489–14510 (2012). CASPubMedPubMed Central Google Scholar
John, G. R., Lee, S. C., Song, X., Rivieccio, M. & Brosnan, C. F. IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia49, 161–176 (2005). PubMed Google Scholar
Brambilla, R. et al. Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med.202, 145–156 (2005). CASPubMedPubMed Central Google Scholar
Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature Med.12, 829–834 (2006). CASPubMed Google Scholar
Brambilla, R. et al. Transgenic inhibition of astroglial NF-κB improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J. Immunol.182, 2628–2640 (2009). CASPubMed Google Scholar
Kim, R. Y. et al. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J. Neuroimmunol.274, 53–61 (2014). CASPubMedPubMed Central Google Scholar
Moreno, M. et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J. Neurosci.34, 8175–8185 (2014). PubMedPubMed Central Google Scholar
Ko, E. M. et al. Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J. Neuroinflammation11, 105 (2014). PubMedPubMed Central Google Scholar
Argaw, A. T., Gurfein, B. T., Zhang, Y., Zameer, A. & John, G. R. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc. Natl Acad. Sci. USA106, 1977–1982 (2009). CASPubMedPubMed Central Google Scholar
Argaw, A. T. et al. Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J. Clin. Invest.122, 2454–2468 (2012). This study shows that an astrocyte-derived molecule, VEGFA, could increase permeability of the BBB and facilitate CNS entry of inflammatory cells. CASPubMedPubMed Central Google Scholar
Kang, Z. et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity32, 414–425 (2010). CASPubMedPubMed Central Google Scholar
Xanthos, D. N. & Sandkuhler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Rev. Neurosci.15, 43–53 (2014). CAS Google Scholar
Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nature Rev. Neurosci.7, 41–53 (2006). CAS Google Scholar
Alvarez, J. I. et al. The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science334, 1727–1731 (2011). CASPubMed Google Scholar
Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia61, 1939–1958 (2013). PubMedPubMed Central Google Scholar
Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature485, 512–516 (2012). This study shows that an astrocyte-derived molecule, APOE, could facilitate maintenance BBB integrity and thereby protect against CNS inflammation. CASPubMedPubMed Central Google Scholar
Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci.28, 7231–7243 (2008). CASPubMedPubMed Central Google Scholar
Drogemuller, K. et al. Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J. Immunol.181, 2683–2693 (2008). This transgenic loss-of-function study shows that astrocytes have important functions in restricting the spread of CNS infections. PubMed Google Scholar
Haroon, F. et al. GP130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J. Immunol.186, 6521–6531 (2011). CASPubMed Google Scholar
Middeldorp, J. & Hol, E. M. GFAP in health and disease. Prog. Neurobiol.93, 421–443 (2011). CASPubMed Google Scholar
Liedtke, W., Edelmann, W., Chiu, F. C., Kucherlapati, R. & Raine, C. S. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am. J. Pathol.152, 251–259 (1998). CASPubMedPubMed Central Google Scholar
Macauley, S. L., Pekny, M. & Sands, M. S. The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J. Neurosci.31, 15575–15585 (2011). CASPubMedPubMed Central Google Scholar
Kraft, A. W. et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J.27, 187–198 (2013). This transgenic loss-of-function study shows that reactive astrogliosis helps to restrict amyloid plaque pathology. CASPubMedPubMed Central Google Scholar
Norden, D. M., Fenn, A. M., Dugan, A. & Godbout, J. P. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia62, 881–895 (2014). PubMedPubMed Central Google Scholar
Cekanaviciute, E. et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia62, 1227–1240 (2014). This transgenic loss-of-function study shows that TGFβ signalling in reactive astrocytes reduces CNS inflammation after stroke. PubMedPubMed Central Google Scholar
Cekanaviciute, E. et al. Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J. Immunol.193, 139–149 (2014). CASPubMed Google Scholar
Min, K. J., Yang, M. S., Kim, S. U., Jou, I. & Joe, E. H. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci.26, 1880–1887 (2006). CASPubMedPubMed Central Google Scholar
Kostianovsky, A. M., Maier, L. M., Anderson, R. C., Bruce, J. N. & Anderson, D. E. Astrocytic regulation of human monocytic/microglial activation. J. Immunol.181, 5425–5432 (2008). CASPubMed Google Scholar
Mizee, M. R. et al. Astrocyte-derived retinoic acid: a novel regulator of blood–brain barrier function in multiple sclerosis. Acta Neuropathol.128, 691–703 (2014). CASPubMed Google Scholar
Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol.35, 22–31 (2014). CASPubMed Google Scholar
Wang, X. et al. Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-κB- and STAT1-dependent chemokine production in astrocytes. Acta Neuropathol.126, 711–724 (2013). CASPubMed Google Scholar
Shao, W. et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature494, 90–94 (2013). CASPubMed Google Scholar
Ousman, S. S. et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature448, 474–479 (2007). This study shows that reactive astrocytes reduce CNS inflammation through a CRYAB-dependent mechanism in autoimmune encephalomyelitis. CASPubMed Google Scholar
Steelman, A. J., Smith, R. 3rd, Welsh, C. J. & Li, J. Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis. J. Biol. Chem.288, 23776–23787 (2013). CASPubMedPubMed Central Google Scholar
Hutchison, E. R. et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia61, 1018–1028 (2013). PubMedPubMed Central Google Scholar
Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol.33, 105–115 (2012). CASPubMed Google Scholar
Spence, R. D. et al. Neuroprotection mediated through estrogen receptor-α in astrocytes. Proc. Natl Acad. Sci. USA108, 8867–8872 (2011). This transgenic loss-of-function study shows that reactive astrocytes can reduce CNS inflammation in autoimmune encephalomyelitis via an ERα-dependent mechanism. CASPubMedPubMed Central Google Scholar
Spence, R. D. et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. J. Neurosci.33, 10924–10933 (2013). CASPubMedPubMed Central Google Scholar
Rot, A. & von Andrian, U. H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004). CASPubMed Google Scholar
Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity27, 190–202 (2007). CASPubMedPubMed Central Google Scholar
Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol.6, 205–217 (2006). CAS Google Scholar
Franciotta, D., Salvetti, M., Lolli, F., Serafini, B. & Aloisi, F. B cells and multiple sclerosis. Lancet Neurol.7, 852–858 (2008). CASPubMed Google Scholar
Peters, A. et al. TH17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity35, 986–996 (2011). CASPubMedPubMed Central Google Scholar
Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med.365, 2188–2197 (2011). CASPubMedPubMed Central Google Scholar
Metcalf, T. U., Baxter, V. K., Nilaratanakul, V. & Griffin, D. E. Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. J. Virol.87, 2420–2429 (2013). CASPubMedPubMed Central Google Scholar
Pohl, M. et al. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol. Commun.1, 85 (2013). PubMedPubMed Central Google Scholar
Yamagata, K., Nakayama, C. & Suzuki, K. Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein E in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochem. Int.62, 43–49 (2013). CASPubMed Google Scholar
Mahley, R. W. & Huang, Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron76, 871–885 (2012). CASPubMedPubMed Central Google Scholar
Halassa, M. M. & Haydon, P. G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol.72, 335–355 (2010). CASPubMedPubMed Central Google Scholar
Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nature Neurosci.17, 694–703 (2014). CASPubMed Google Scholar
Sofroniew, M. V. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist20, 160–172 (2014). CASPubMed Google Scholar
Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic–spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med.202, 473–477 (2005). This study identifies the astrocyte protein AQP4 as the target of autoimmune antibodies in NMO, thereby providing both a diagnostic tool and a mechanistic target that have revolutionized understanding of this disorder. CASPubMedPubMed Central Google Scholar
Roemer, S. F. et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain130, 1194–1205 (2007). PubMed Google Scholar
Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain133, 349–361 (2010). PubMedPubMed Central Google Scholar
Howe, C. L. et al. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia62, 692–708 (2014). PubMedPubMed Central Google Scholar
Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol.71, 276–283 (2014). PubMed Google Scholar
Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology82, 474–481 (2014). CASPubMedPubMed Central Google Scholar
Hoftberger, R. et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult. Scler.http://dx.doi.org/10.1177/1352458514555785 (2014).
Zamvil, S. S. & Slavin, A. J. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol. Neuroimmunol. Neuroinflamm.2, e62 (2015). PubMedPubMed Central Google Scholar
Diamond, B., Huerta, P. T., Mina-Osorio, P., Kowal, C. & Volpe, B. T. Losing your nerves? Maybe it's the antibodies. Nature Rev. Immunol.9, 449–456 (2009). CAS Google Scholar
Kowarik, M. C. et al. The cerebrospinal fluid immunoglobulin transcriptome and proteome in neuromyelitis optica reveals central nervous system-specific B cell populations. J. Neuroinflammation12, 19 (2015). PubMedPubMed Central Google Scholar
Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nature Rev. Neurol.10, 493–506 (2014). CAS Google Scholar
Srivastava, R. et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med.367, 115–123 (2012). CASPubMedPubMed Central Google Scholar
Brickshawana, A. et al. Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study. Lancet Neurol.13, 795–806 (2014). CASPubMedPubMed Central Google Scholar
Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol.35, 347–369 (2014). CASPubMed Google Scholar
Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci.35, 369–389 (2012). CASPubMed Google Scholar
Clarke, L. E. & Barres, B. A. Emerging roles of astrocytes in neural circuit development. Nature Rev. Neurosci.14, 311–321 (2013). CAS Google Scholar
Rappold, P. M. & Tieu, K. Astrocytes and therapeutics for Parkinson's disease. Neurotherapeutics7, 413–423 (2010). CASPubMedPubMed Central Google Scholar
Failli, V. et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain135, 3238–3250 (2012). PubMed Google Scholar
Gold, R., Linington, C. & Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain129, 1953–1971 (2006). PubMed Google Scholar
Hansen, R. R. & Malcangio, M. Astrocytes — multitaskers in chronic pain. Eur. J. Pharmacol.716, 120–128 (2013). CASPubMed Google Scholar
Paradise, M. B., Naismith, S. L., Norrie, L. M., Graeber, M. B. & Hickie, I. B. The role of glia in late-life depression. Int. Psychogeriatr.24, 1878–1890 (2012). PubMed Google Scholar
Martin, J. L., Magistretti, P. J. & Allaman, I. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes. Curr. Drug Targets14, 1308–1321 (2013). CASPubMed Google Scholar
Czeh, B. & Di Benedetto, B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur. Neuropsychopharmacol23, 171–185 (2013). CASPubMed Google Scholar
Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature504, 394–400 (2013). CASPubMedPubMed Central Google Scholar
Miller, D. B. & O'Callaghan, J. P. Depression, cytokines, and glial function. Metabolism54, 33–38 (2005). CASPubMed Google Scholar
Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci.9, 46–56 (2008). CAS Google Scholar
Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry67, 446–457 (2010). CASPubMed Google Scholar
Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nature Rev. Immunol.11, 625–632 (2011). CAS Google Scholar
Bauer, S., Kerr, B. J. & Patterson, P. H. The neuropoietic cytokine family in development, plasticity, disease and injury. Nature Rev. Neurosci.8, 221–232 (2007). CAS Google Scholar
Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron64, 61–78 (2009). CASPubMed Google Scholar
Patterson, P. H. Maternal infection and autism. Brain Behav. Immun.26, 393 (2012). PubMed Google Scholar
Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nature Genet.27, 117–120 (2001). CASPubMed Google Scholar
Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci.32, 5017–5023 (2012). CASPubMedPubMed Central Google Scholar
Lobsiger, C. S. & Cleveland, D. W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nature Neurosci.10, 1355–1360 (2007). CASPubMed Google Scholar
Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci.10, 615–622 (2007). CASPubMed Google Scholar
Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci.11, 251–253 (2008). CASPubMed Google Scholar
Myer, D. J., Gurkoff, G. G., Lee, S. M., Hovda, D. A. & Sofroniew, M. V. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain129, 2761–2772 (2006). CASPubMed Google Scholar
Sahni, V. et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J. Neurosci.30, 1839–1855 (2010). CASPubMedPubMed Central Google Scholar
Shimada, I. S., Borders, A., Aronshtam, A. & Spees, J. L. Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke42, 3231–3237 (2011). PubMedPubMed Central Google Scholar
Shimada, I. S., Lecomte, M. D., Granger, J. C., Quinlan, N. J. & Spees, J. L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J. Neurosci.32, 7926–7940 (2012). CASPubMedPubMed Central Google Scholar
Meeuwsen, S., Persoon-Deen, C., Bsibsi, M., Ravid, R. & van Noort, J. M. Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia43, 243–253 (2003). PubMed Google Scholar
Jensen, C. J., Massie, A. & De Keyser, J. Immune players in the CNS: the astrocyte. J. Neuroimmune Pharmacol.8, 824–839 (2013). PubMed Google Scholar
Cooley, I. D., Chauhan, V. S., Donneyz, M. A. & Marriott, I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia62, 818–828 (2014). PubMedPubMed Central Google Scholar
Pitter, K. L. et al. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia62, 1595–1607 (2014). PubMedPubMed Central Google Scholar
Sarafian, T. A. et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS ONE5, e9532 (2010). PubMedPubMed Central Google Scholar
Hong, P., Jiang, M. & Li, H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia62, 2044–2060 (2014). PubMed Google Scholar
Krumbholz, M. et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med.201, 195–200 (2005). CASPubMedPubMed Central Google Scholar