Childhood absence epilepsy: Genes, channels, neurons and networks (original) (raw)
Panayiotopoulos, C. P. in Epilepsy: a Comprehensive Textbook (eds Engel, J. Jr & Pedley, T. A.) 2327–2346 (Lippincott–Raven, Philadelphia, 1997).A comprehensive clinical review of absence epilepsies. This and reference4contain detailed arguments and data in favour of a potential classification of CAE subtypes. Google Scholar
Avoli, M., Rogawski, M. A. & Avanzini, G. Generalized epileptic disorders: an update. Epilepsia42, 445–457 (2001). ArticleCASPubMed Google Scholar
Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia30, 389–399 (1989).
Hirsch, E., Blanc-Platier, A. & Marescaux, C. in Idiopathic Generalized Epilepsies: Clinical, Experimental and Genetic Aspects (eds Malafosse, P. et al.) 87–93 (John Libbey, London, 1994). Google Scholar
Panayiotopoulos, C. P. Treatment of typical absence seizures and related epileptic syndromes. Paediatr. Drugs3, 379–403 (2001). ArticleCASPubMed Google Scholar
Loiseau, P. & Duche, B. in Typical Absences and Related Epileptic Syndromes (eds Duncan, J. S. & Panayiotopoulos, C. P.) 152–160 (Churchill Livingstone, London, 1995). Google Scholar
Janz, D., Beck-Mannagetta, G. & Sander, T. Do idiopathic generalized epilepsies share a common susceptibility gene? Neurology42, 48–55 (1992). CASPubMed Google Scholar
Berkovic, S. F., Andermann, F., Andermann, E. & Gloor, P. Concepts of absence epilepsies: discrete syndromes or biological continuum? Neurology37, 993–1000 (1987). ArticleCASPubMed Google Scholar
Loiseau, J. et al. Survey of seizure disorders in the French southwest. I. Incidence of epileptic syndromes. Epilepsia31, 391–396 (1990). ArticleCASPubMed Google Scholar
Sander, J. W. A. S. Typical Absences and Related Epileptic Syndromes (eds Duncan, J. S. & Panayiotopoulos, C. P.) 135–144 (Churchill Livingstone, London, 1995). Google Scholar
Desguerre, I. et al. in Idiopathic Generalized Epilepsies: Clinical, Experimental and Genetic Aspects (eds Malafosse, P. et al.) 19–25 (John Libbey, London, 1994). Google Scholar
Rocca, W. A., Sharbrough, F. W., Hauser, W. A., Annegers, J. F. & Schoenberg, B. S. Risk factors for absence seizures: a population-based case–control study in Rochester, Minnesota. Neurology37, 1309–1314 (1987). ArticleCASPubMed Google Scholar
Meencke, H. J. in Typical Absences and Related Epileptic Syndromes (eds Duncan, J. S. & Panayiotopoulos, C. P.) 122–132 (Churchill Livingstone, London, 1995). Google Scholar
Woermann, F. G., Sisodiya, S. M., Free, S. L. & Duncan, J. S. Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes. Brain121, 1661–1667 (1998). ArticlePubMed Google Scholar
Savic, I., Pauli, S., Thorell, J. O. & Blomqvist, G. In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy. J. Neurol. Neurosurg. Psychiatry57, 797–804 (1994). ArticleCASPubMedPubMed Central Google Scholar
Berkovic, S. F. in Epilepsy: a Comprehensive Textbook (eds Engel, J. Jr & Pedley, T. A.) 217–224 (Lippincott–Raven, Philadelphia, 1998). Google Scholar
Bianchi, A. & The Italian League Against Epilepsy Collaborative Group in Typical Absences and Related Epileptic Syndromes (eds Duncan, J. S. & Panayiotopoulos, C. P.) 328–337 (Churchill Livingstone, London, 1995). Google Scholar
Metrakos, K. & Metrakos, J. D. Genetics of convulsive disorder. II. Genetic and electroencephalographic studies in centrencephalic epilepsy. Neurology11, 464–483 (1961). Article Google Scholar
Rogawski, M. A. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci.23, 393–398 (2000). ArticleCASPubMed Google Scholar
Steinlein, O. K. & Noebels, J. L. Ion channels and epilepsy in man and mouse. Curr. Opin. Genet. Dev.10, 286–291 (2000). ArticleCASPubMed Google Scholar
Wallace, R. H. et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nature Genet.28, 49–52 (2001).The first identification of a GABAAreceptor gene mutation in subjects with CAE and febrile seizures. CASPubMed Google Scholar
Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nature Genet.28, 46–48 (2001). CASPubMed Google Scholar
Sander, T. et al. Exclusion of linkage between idiopathic generalized epilepsies and the GABAA receptor α1 and β2 subunit gene cluster on chromosome 5. Epilepsy Res.23, 235–244 (1996). ArticleCASPubMed Google Scholar
Sander, T. et al. Linkage analysis between idiopathic generalized epilepsies and the GABAA receptor α5, β3 and γ3 subunit gene cluster on chromosome 15. Acta Neurol. Scand.96, 1–7 (1997). ArticleCASPubMed Google Scholar
Feucht, M. et al. Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol. Psychiatry46, 997–1002 (1999). ArticleCASPubMed Google Scholar
Huntsman, M. M., Porcello, D. M., Homanics, G. E., DeLorey, T. M. & Huguenard, J. R. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science283, 541–543 (1999).Using knockout mice, the authors show for the first time that removal of a GABAAreceptor subunit in NRT neurons leads to decreased intra-NRT GABAA-receptor-mediated inhibition and hypersynchronous activity in an isolated thalamic network. ArticleCASPubMed Google Scholar
Crunelli, V. & Leresche, N. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci.14, 16–21 (1991). ArticleCASPubMed Google Scholar
Blumenfeld, H. & McCormick, D. A. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci.20, 5153–5162 (2000).This and reference115provide solid evidence that strong cortical input to an isolated thalamus can switch intrathalamic oscillations from a fast (10-Hz) to a slow (3-Hz) rhythm. ArticleCASPubMedPubMed Central Google Scholar
Hosford, D. A. et al. Neural network of structures in which GABAB receptors regulate absence seizures in the lethargic (lh/lh) mouse model. J. Neurosci.15, 7367–7376 (1995). ArticleCASPubMedPubMed Central Google Scholar
Snead, O. C. Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. Eur. J. Pharmacol.213, 343–349 (1992). ArticleCASPubMed Google Scholar
Danober, L., Deransart, C., Depaulis, A., Vergnes, M. & Marescaux, C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol.55, 27–57 (1998). ArticleCASPubMed Google Scholar
Sander, T. et al. Association analysis of exonic variants of the gene encoding the GABAB receptor and idiopathic generalized epilepsy. Am. J. Med. Genet.88, 305–310 (1999). ArticleCASPubMed Google Scholar
Jouvenceau, A. et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet358, 801–807 (2001).The first identification of a mutation in the gene that encodes the pore-forming subunit (α1A) of the P/Q-type Ca2+channel in a proband with absence epilepsy and ataxia. ArticleCASPubMed Google Scholar
Escayg, A. et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am. J. Hum. Genet.66, 1531–1539 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sander, T. et al. The gene encoding the α1A-voltage-dependent calcium channel (CACN1A4) is not a candidate for causing common subtypes of idiopathic generalized epilepsy. Epilepsy Res.29, 115–122 (1998). ArticleCASPubMed Google Scholar
Sander, T. et al. Genetic variation of the human μ-opioid receptor and susceptibility to idiopathic absence epilepsy. Epilepsy Res.39, 57–61 (2000). ArticleCASPubMed Google Scholar
Przewlocka, B. et al. Anatomical and functional aspects of μ opioid receptors in epileptic WAG/Rij rats. Epilepsy Res.29, 167–173 (1998). ArticleCASPubMed Google Scholar
Steinlein, O. et al. Possible association of a silent polymorphism in the neuronal nicotinic acetylcholine receptor subunit α4 with common idiopathic generalized epilepsies. Am. J. Med. Genet.74, 445–449 (1997). ArticleCASPubMed Google Scholar
Chioza, B. et al. Failure to replicate association between the gene for the neuronal nicotinic acetylcholine receptor α4 subunit (CHRNA4) and IGE. Am. J. Med. Genet.96, 814–816 (2000). ArticleCASPubMed Google Scholar
Durner, M. et al. Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8 — and genetic heterogeneity. Am. J. Hum. Genet.64, 1411–1419 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fong, G. C. et al. Childhood absence epilepsy with tonic–clonic seizures and electroencephalogram 3–4-Hz spike and multispike–slow wave complexes: linkage to chromosome 8q24. Am. J. Hum. Genet.63, 1117–1129 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sugimoto, Y. et al. Childhood absence epilepsy in 8q24: refinement of candidate region and construction of physical map. Genomics68, 264–272 (2000). ArticleCASPubMed Google Scholar
Zara, F. et al. Mapping of genes predisposing to idiopathic generalized epilepsy. Hum. Mol. Genet.4, 1201–1207 (1995). ArticleCASPubMed Google Scholar
Sugimoto, Y. et al. T-STAR gene: fine mapping in the candidate region for childhood absence epilepsy on 8q24 and mutational analysis in patients. Epilepsy Res.46, 139–144 (2001). ArticleCASPubMed Google Scholar
Kananura, C. et al. Tandem pore domain K+-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am. J. Med. Genet.114, 227–229 (2002). ArticlePubMed Google Scholar
Morita, R. et al. JH8, a gene highly homologous to the mouse jerky gene, maps to the region for childhood absence epilepsy on 8q24. Biochem. Biophys. Res. Commun.248, 307–314 (1998). ArticleCASPubMed Google Scholar
Morita, R. et al. Exclusion of the JRK/JH8 gene as a candidate for human childhood absence epilepsy mapped on 8q24. Epilepsy Res.37, 151–158 (1999). ArticleCASPubMed Google Scholar
Haug, K. et al. Mutation screening of the chromosome 8q24.3-human activity-regulated cytoskeleton-associated gene (ARC) in idiopathic generalized epilepsy. Mol. Cell. Probes14, 255–260 (2000). ArticleCASPubMed Google Scholar
Moore, T. et al. Polymorphism analysis of JRK/JH8, the human homologue of mouse jerky, and description of a rare mutation in a case of CAE evolving to JME. Epilepsy Res.46, 157–167 (2001). ArticleCASPubMed Google Scholar
Delgado-Escueta, A. V. et al. Mapping and positional cloning of common idiopathic generalized epilepsies: juvenile myoclonus epilepsy and childhood absence epilepsy. Adv. Neurol.79, 351–374 (1999). CASPubMed Google Scholar
Sander, T. et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum. Mol. Genet.9, 1465–1472 (2000). ArticleCASPubMed Google Scholar
Durner, M. et al. Genome scan of idiopathic generalized epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann. Neurol.49, 328–335 (2001). ArticleCASPubMed Google Scholar
Frankel, W. N. Detecting genes in new and old mouse models for epilepsy: a prospectus through the magnifying glass. Epilepsy Res.36, 97–110 (1999). ArticleCASPubMed Google Scholar
Burgess, D. L. & Noebels, J. L. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Res.36, 111–122 (1999).This and reference21provide a concise and essential overview of the genetic mouse models of absence epilepsy and ataxia, and their relevance to human absence epilepsy and other neurological disorders. ArticleCASPubMed Google Scholar
Crunelli, V. & Leresche, N. Block of thalamic T-type Ca2+ channels by ethosuximide is not the entire story. Epilepsy Curr.2, 53–56 (2002). ArticlePubMedPubMed Central Google Scholar
Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell87, 607–617 (1996).This work describes the identification of the single gene mutation (in the Ca2+channel α1A subunit) of the tottering mouse, a model of absence seizures and ataxia. ArticleCASPubMed Google Scholar
Burgess, D. L., Jones, J. M., Meisler, M. H. & Noebels, J. L. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell88, 385–392 (1997).This work describes the identification of the single gene mutation (in the Ca2+channel β4 subunit) of the lethargic mouse, a model of absence seizures and ataxia. ArticleCASPubMed Google Scholar
Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature408, 936–943 (2000). ArticleCASPubMed Google Scholar
Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell87, 543–552 (1996). ArticleCASPubMed Google Scholar
Denier, C. et al. High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology52, 1816–1821 (1999). ArticleCASPubMed Google Scholar
Jun, K. et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. Proc. Natl Acad. Sci. USA96, 15245–15250 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fletcher, C. F. et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J.15, 1288–1290 (2001).References62and63show that knockout of the gene that encodes the pore-forming subunit (α1A) of P/Q-type Ca2+channels leads to a mouse phenotype of absence seizures, dystonia, ataxia and cerebellar atrophy. ArticleCASPubMed Google Scholar
Song, I., Kim, D., Jun, K. & Shin, H. S. Role of T-type calcium channels in the genesis of absence seizure in the mutant mice for α1A, the pore-forming subunit of the P/Q-type calcium channel. Soc. Neurosci. Abstr.27, 151.21 (2001). Google Scholar
Zhang, Y. & Noebles, J. L. Altered calcium currents in thalamocortical relay cells of mouse absence models with mutations of α1A and β4 calcium channel subunits. Soc. Neurosci. Abstr.27, 151.16 (2001). Google Scholar
Tsakiridou, E., Bertollini, L., de Curtis, M., Avanzini, G. & Pape, H. C. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J. Neurosci.15, 3110–3117 (1995).The first demonstration, in a rat genetic model of absence epilepsy, of an increase in a voltage-dependent current before seizure onset. ArticleCASPubMedPubMed Central Google Scholar
Coenen, A. M., Drinkenburg, W. H., Inoue, M. & van Luijtelaar, E. L. Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res.12, 75–86 (1992). ArticleCASPubMed Google Scholar
Drinkenburg, W. H. I. M., Van Luijtelaar, E. L. J. M. & Coenen, A. M. L. in Memory and Awareness in Anesthesia III (eds Bonke, B., Bovill, J. G. & Moerman, N.) 186–196 (Van Gorcum, Assen, The Netherlands, 1996). Google Scholar
Holter, J. L., Humphries, A., Crunelli, V. & Carter, D. A. Optimisation of methods for selecting candidate genes from cDNA array screens: application to rat brain punches and pineal. J. Neurosci. Methods112, 173–184 (2001). ArticleCASPubMed Google Scholar
Niedermeyer, E. Primary (idiopathic) generalized epilepsy and underlying mechanisms. Clin. Electroencephalogr.27, 1–21 (1996). ArticleCASPubMed Google Scholar
Gibbs, F. A. & Gibbs, E. L. Atlas of Electroencephalography 2nd edn Vol. 2 (Addison–Wesley, Cambridge, UK,1952). Google Scholar
Bancaud, J. in The Physiopathogenesis of the Epilepsies (eds Gastaut, H., Jasper, H., Bancaud, J. & Waltregny, C. C.) 158–185 (Thomas, Springfield, Illinois,1969). Google Scholar
Hunter, J. & Jasper, H. H. Effects of thalamic stimulation on unanesthetized animals. Electroencephalogr. Clin. Neurophysiol.1, 305–324 (1949). CASPubMed Google Scholar
Jasper, H. H. & Droogleever-Fortuyn, J. Experimental studies of the functional anatomy of petit mal epilepsy. Res. Publ. Assoc. Res. Nerve Ment. Dis.26, 272–298 (1947). Google Scholar
Gloor, P. & Fariello, R. G. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci.11, 63–68 (1988). ArticleCASPubMed Google Scholar
Ferri, R., Iliceto, G. & Carlucci, V. Topographic EEG mapping of 3/s spike-and-wave complexes during absence seizures. Ital. J. Neurol. Sci.16, 541–547 (1995). ArticleCASPubMed Google Scholar
Steriade, M. & Amzica, F. Dynamic coupling among neocortical neurons during evoked and spontaneous spike–wave seizure activity. J. Neurophysiol.72, 2051–2069 (1994). ArticleCASPubMed Google Scholar
Meeren, H. K., Pijn, J. P., Van Luijtelaar, E. L., Coenen, A. M. & Lopes da Silva, F. H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci.22, 1480–1495 (2002).Using an established model of absence seizures, this paper provided the first demonstration that spontaneous, genetically determined SWDs start in a restricted cortical area before spreading to other cortical regions, and later to thalamic structures. ArticleCASPubMedPubMed Central Google Scholar
Neckelmann, D., Amzica, F. & Steriade, M. Spike–wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. J. Neurophysiol.80, 1480–1494 (1998). ArticleCASPubMed Google Scholar
Shouse, M. N. & Martins da Silva, A. in Epilepsy: a Comprehensive Textbook (eds Engel, J. Jr & Pedley, T. A.) 1917–1927 (Lippincott–Raven, Philadelphia, 1998). Google Scholar
Horita, H. Epileptic seizures and sleep–wake rhythm. Psychiatry Clin. Neurosci.55, 171–172 (2001). ArticleCASPubMed Google Scholar
Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science262, 679–685 (1993). ArticleCASPubMed Google Scholar
Pinault, D. et al. Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J. Physiol. (Lond.)509, 449–456 (1998). ArticleCAS Google Scholar
Slaght, S. J., Leresche, N., Deniau, J.-M., Crunelli, V. & Charpier, S. Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J. Neurosci.22, 2323–2334 (2002).The first description of the intracellularly recorded activity in NRT neurons during spontaneous SWDs in a genetic model of absence seizures, highlighting the lack of hyperpolarizing GABAA-receptor-mediated IPSPs. ArticleCASPubMedPubMed Central Google Scholar
Yeni, S. N., Kabasakal, L., Yalcinkaya, C., Nisli, C. & Dervent, A. Ictal and interictal SPECT findings in childhood absence epilepsy. Seizure9, 265–269 (2000). ArticleCASPubMed Google Scholar
Williams, D. A. A study of thalamic and cortical rhythms in petit mal. Brain76, 56–69 (1953). Article Google Scholar
Velasco, M., Velasco, F., Velasco, A. L., Lujan, M. & Vazquez del Mercado, J. Epileptiform EEG activities of the centromedian thalamic nuclei in patients with intractable partial motor, complex partial, and generalized seizures. Epilepsia30, 295–306 (1989). ArticleCASPubMed Google Scholar
Snead, O. C. Basic mechanisms of generalized absence seizures. Ann. Neurol.37, 146–157 (1995). ArticlePubMed Google Scholar
Iannetti, P. et al. Ictal single photon emission computed tomography in absence seizures: apparent implication of different neuronal mechanisms. J. Child. Neurol.16, 339–344 (2001). ArticleCASPubMed Google Scholar
Prevett, M. C., Duncan, J. S., Jones, T., Fish, D. R. & Brooks, D. J. Demonstration of thalamic activation during typical absence seizures using H215O and PET. Neurology45, 1396–1402 (1995).The first imaging evidence that thalamic structures are involved in human absence seizures. ArticleCASPubMed Google Scholar
Giaretta, D., Avoli, M. & Gloor, P. Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy. Brain Res.405, 68–79 (1987). ArticleCASPubMed Google Scholar
Charpier, S. et al. On the putative contribution of GABAB receptors to the electrical events occurring during spontaneous spike and wave discharges. Neuropharmacology38, 1699–1706 (1999). ArticleCASPubMed Google Scholar
Ayala, G. F. The paroxysmal depolarizing shift. Prog. Clin. Biol. Res.124, 15–21 (1983). CASPubMed Google Scholar
Pumain, R., Louvel, J., Gastard, M., Kurcewicz, I. & Vergnes, M. Responses to _N_-methyl-d-aspartate are enhanced in rats with _petit mal_-like seizures. J Neural Transm Suppl35, 97–108 (1992). CASPubMed Google Scholar
Luhmann, H. J., Mittmann, T., Van Luijtelaar, G. & Heinemann, U. Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy. Epilepsy Res.22, 43–51 (1995). ArticleCASPubMed Google Scholar
Timofeev, I., Grenier, F. & Steriade, M. Spike–wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol.80, 1495–1513 (1998). ArticleCASPubMed Google Scholar
Bal, T., Von Krosigk, M. & McCormick, D. A. Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J. Physiol. (Lond.)483, 665–685 (1995). ArticleCAS Google Scholar
Talley, E. M., Solorzano, G., Depaulis, A., Perez-Reyes, E. & Bayliss, D. A. Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res. Mol. Brain Res.75, 159–165 (2000). ArticleCASPubMed Google Scholar
Caddick, S. J. et al. Excitatory but not inhibitory synaptic transmission is reduced in lethargic (_Cacnb4_lh) and tottering (_Cacna1a_tg) mouse thalami. J. Neurophysiol.81, 2066–2074 (1999). ArticleCASPubMed Google Scholar
Steriade, M. & Contreras, D. Spike–wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J. Neurophysiol.80, 1439–1455 (1998). ArticleCASPubMed Google Scholar
Avoli, M. & Gloor, P. Role of the thalamus in generalized penicillin epilepsy: observations on decorticated cats. Exp. Neurol.77, 386–402 (1982). ArticleCASPubMed Google Scholar
Avanzini, G., de Curtis, M., Franceschetti, S., Sancini, G. & Spreafico, R. Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS. Epilepsy Res.26, 37–44 (1996). ArticleCASPubMed Google Scholar
Steriade, M. & Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J. Neurosci.15, 623–642 (1995).The first demonstration that most thalamocortical neurons are silent during spontaneous SWDs in cats. With reference83, this reference clearly indicates that the inhibition of these neurons is responsible for the subject's unresponsiveness during absence seizures. ArticleCASPubMedPubMed Central Google Scholar
Avoli, M., Gloor, P., Kostopoulos, G. & Gotman, J. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. J. Neurophysiol.50, 819–837 (1983). ArticleCASPubMed Google Scholar
Timofeev, I., Grenier, F. & Steriade, M. Spike–wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol.80, 1495–1513 (1998). ArticleCASPubMed Google Scholar
Golshani, P., Liu, X. B. & Jones, E. G. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc. Natl Acad. Sci. USA98, 4172–4177 (2001). ArticleCASPubMedPubMed Central Google Scholar
Slaght, S. J., Charpier, S., Leresche, N., Deniau, J.-M. & Crunelli, V. Firing properties of thalamic neurones during spike and wave discharges in the GAERS genetic model of absence epilepsy. Soc. Neurosci. Abstr.27, 969.7 (2001). Google Scholar
Kim, D. et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron31, 35–45 (2001).The first demonstration, using transgenic techniques, that the gene that encodes the pore-forming subunit (α1G) of the T-type Ca2+channel is crucial in the generation of pharmacologically induced absence seizures. ArticleCASPubMed Google Scholar
Snead, O. C. Pharmacological models of generalized absence seizures in rodents. J Neural Transm Suppl35, 7–19 (1992). PubMed Google Scholar
De la Pena, E. & Geijo-Barrientos, E. Laminar localization, morphology, and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig medial frontal cortex. J. Neurosci.16, 5301–5311 (1996). ArticleCASPubMedPubMed Central Google Scholar
Williams, S. R., Toth, T. I., Turner, J. P., Hughes, S. W. & Crunelli, V. The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J. Physiol. (Lond.)505, 689–705 (1997). ArticleCAS Google Scholar
Hughes, S. W., Cope, D. W., Blethyn, K. & Crunelli, V. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron33, 947–958 (2002). ArticleCASPubMed Google Scholar
Staak, R. & Pape, H. C. Contribution of GABAA and GABAB receptors to thalamic neuronal activity during spontaneous absence seizures in rats. J. Neurosci.21, 1378–1384 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bal, T., Debay, D. & Destexhe, A. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J. Neurosci.20, 7478–7488 (2000). ArticleCASPubMedPubMed Central Google Scholar
Seidenbecher, T. & Pape, H. C. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy. Eur. J. Neurosci.13, 1537–1546 (2001). ArticleCASPubMed Google Scholar
Fletcher, C. F. & Frankel, W. N. Ataxic mouse mutants and molecular mechanisms of absence epilepsy. Hum. Mol. Genet.8, 1907–1912 (1999). ArticleCASPubMed Google Scholar
Zhang, Y. F., Gibbs, J. W. & Coulter, D. A. Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: ethosuximide, trimethadione, and dimethadione. Epilepsy Res.23, 15–36 (1996). ArticleCASPubMed Google Scholar
Wells, T. & Carter, D. A. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J. Neurosci. Methods108, 111–130 (2001). ArticleCASPubMed Google Scholar
Cox, G. A. et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell91, 139–148 (1997). ArticleCASPubMed Google Scholar
Castro-Alamancos, M. A. Neocortical synchronized oscillations induced by thalamic disinhibition in vivo. J. Neurosci.19, RC27 (1999).
Sander, T. et al. Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am. J. Med. Genet.74, 416–421 (1997). ArticleCASPubMed Google Scholar
Sander, T. et al. Refinement of map position of the human GluR6 kainate receptor gene (GRIK2) and lack of association and linkage with idiopathic generalized epilepsies. Neurology45, 1713–1720 (1995). ArticleCASPubMed Google Scholar
Goodwin, H. et al. No association found between polymorphisms in genes encoding mGluR7 and mGluR8 and idiopathic generalised epilepsy in a case control study. Epilepsy Res.39, 27–31 (2000). ArticleCASPubMed Google Scholar
Escayg, A. et al. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus — and prevalence of variants in patients with epilepsy. Am. J. Hum. Genet.68, 866–873 (2001). ArticleCASPubMedPubMed Central Google Scholar
Steinlein, O. K., Stoodt, J., Biervert, C., Janz, D. & Sander, T. The voltage gated potassium channel KCNQ2 and idiopathic generalized epilepsy. Neuroreport10, 1163–1166 (1999). ArticleCASPubMed Google Scholar
Sander, T. et al. Variation of the genes encoding the human glutamate EAAT2, serotonin and dopamine transporters and susceptibility to idiopathic generalized epilepsy. Epilepsy Res.41, 75–81 (2000). ArticleCASPubMed Google Scholar
Haug, K. et al. Association analysis between a regulatory-promoter polymorphism of the human monoamine oxidase A gene and idiopathic generalized epilepsy. Epilepsy Res.39, 127–132 (2000). ArticleCASPubMed Google Scholar
Sander, T. et al. Association analysis of a regulatory promoter polymorphism of the PAX-6 gene with idiopathic generalized epilepsy. Epilepsy Res.36, 61–67 (1999). ArticleCASPubMed Google Scholar
Sander, T. et al. Common subtypes of idiopathic generalized epilepsies: lack of linkage to D20S19 close to candidate loci (EBN1, EEGV1) on chromosome 20. Am. J. Med. Genet.67, 31–39 (1996). ArticleCASPubMed Google Scholar
Marescaux, C., Vergnes, M. & Depaulis, A. Genetic absence epilepsy in rats from Strasbourg — a review. J Neural Transm Suppl35, 37–69 (1992). CASPubMed Google Scholar
Ingram, E. M., Tessler, S., Bowery, N. G. & Emson, P. C. Glial glutamate transporter mRNAs in the genetically absence epilepsy rat from Strasbourg. Brain Res. Mol. Brain Res.75, 96–104 (2000). ArticleCASPubMed Google Scholar
Midzianovskaia, I. S., Kuznetsova, G. D., Coenen, A. M., Spiridonov, A. M. & Van Luijtelaar, E. L. Electrophysiological and pharmacological characteristics of two types of spike–wave discharges in WAG/Rij rats. Brain Res.911, 62–70 (2001). ArticleCASPubMed Google Scholar
Jando, G. et al. Spike-and-wave epilepsy in rats: sex differences and inheritance of physiological traits. Neuroscience64, 301–317 (1995). ArticleCASPubMed Google Scholar
Noebels, J. L. & Sidman, R. L. Inherited epilepsy: spike–wave and focal motor seizures in the mutant mouse tottering. Science204, 1334–1336 (1979). ArticleCASPubMed Google Scholar
Levitt, P. & Noebels, J. L. Mutant mouse tottering: selective increase of locus ceruleus axons in a defined single-locus mutation. Proc. Natl Acad. Sci. USA78, 4630–4634 (1981). ArticleCASPubMedPubMed Central Google Scholar
Rhyu, I. J., Abbott, L. C., Walker, D. B. & Sotelo, C. An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tgla/tgla) and compound heterozygous tottering/leaner (tg/tgla) mice. Neuroscience90, 717–728 (1999). ArticleCASPubMed Google Scholar
Hosford, D. A. et al. Studies of the lethargic (lh/lh) mouse model of absence seizures: regulatory mechanisms and identification of the lh gene. Adv. Neurol.79, 239–252 (1999). CASPubMed Google Scholar
Noebels, J. F. in Idiopathic Generalized Epilepsies (eds Malafosse, A. et al.) 215–225 (John Libbey & Co. Ltd, London, 1994). Google Scholar
Qiao, X. & Noebels, J. L. Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike–wave seizures. J. Neurosci.13, 4622–4635 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kantheti, P. et al. Mutation in AP-3 δ in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron21, 111–122 (1998). ArticleCASPubMed Google Scholar
Noebels, J. F. in Jasper's Basic Mechanisms of the Epilepsies (eds Delgado-Escueta, A. V., Wilson, W. A., Olsen, R. W. & Porter, R. J.) 227–238 (Lippincott Williams & Wilkins, Philadelphia, 1999). Google Scholar
Meier, H. The neuropathology of ducky, a neurological mutation of the mouse. A pathological and preliminary histochemical study. Acta Neuropathol. (Berl.)11, 15–28 (1968). ArticleCAS Google Scholar
Brodbeck, J. et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated α2δ2 protein with abnormal function. J. Biol. Chem.277, 7684–7693 (2002). ArticleCASPubMed Google Scholar
Barclay, J. et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci.21, 6095–6104 (2002). Article Google Scholar