Renal progenitors: an evolutionary conserved strategy for kidney regeneration (original) (raw)
Remuzzi, G., Benigni, A. & Remuzzi, A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest.116, 288–296 (2006). ArticleCASPubMedPubMed Central Google Scholar
Remuzzi, A. et al. ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int.69, 1124–1130 (2006). ArticleCASPubMed Google Scholar
Ma, L. J. et al. Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J. Am. Soc. Nephrol.16, 966–976 (2005). ArticleCASPubMed Google Scholar
Reimschuessel, R. A fish model of renal regeneration and development. ILAR J.42, 285–291 (2001). ArticleCASPubMed Google Scholar
Brockes, J. P. & Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell. Dev. Biol.24, 525–549 (2008). ArticleCASPubMed Google Scholar
Reimschuessel, R., Bennett, R. O., May, E. A. & Lipsky, M. M. Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol. Pathol.18, 32–38 (1990). ArticleCASPubMed Google Scholar
Elger, M. et al. Nephrogenesis is induced by partial nephrectomy in the Elasmobranch Leucoraja erinacea. J. Am. Soc. Nephrol.14, 1506–1518 (2003). ArticlePubMed Google Scholar
Davidson, A. J. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr. Nephrol.26, 1435–1443 (2011). ArticlePubMed Google Scholar
Romagnani, P. From Proteus to Prometheus: learning from fish to modulate regeneration. J. Am. Soc Nephrol.21, 726–728 (2010). ArticleCASPubMed Google Scholar
Shenghui, H., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell. Dev. Biol.25, 377–406 (2009). ArticleCAS Google Scholar
Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origin, phenotype, lineage commitment and transdifferentiation. Annu. Rev. Cell. Dev. Biol.17, 387–403 (2001). ArticleCASPubMed Google Scholar
Dantzler, W. H. & Braun, J. Vertebrate renal system in Handbook of Physiology (ed. Dantzler, W. H.) Section 13: Comparative Physiology (Oxford University Press, New York, 1997). Google Scholar
Barraclough, G. (ed.) The Times Atlas of World History (Times Books, London, 1978). Google Scholar
Dow, J. A. & Romero, M. F. Drosophila provides rapid modeling of renal development, function, and disease. Am. J. Physiol. Renal Physiol.299, 1237–1244 (2010). ArticleCAS Google Scholar
Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell. Dev. Biol.22, 509–529 (2006). ArticleCASPubMed Google Scholar
Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet.8, 791–802 (2007). ArticleCASPubMed Google Scholar
Liu, W. et al. “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int.60, 680–693 (2001). ArticleCASPubMed Google Scholar
Cha, J. H. et al. Cell proliferation in the loop of Henle in the developing rat kidney. J. Am. Soc. Nephrol.12, 1410–1421 (2001). CASPubMed Google Scholar
Zhou, W., Boucher, R. C., Bollig, F., Englert, C. & Hildebrandt, F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am. J. Physiol. Renal Physiol.299, F1040–F1047 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, W. & Hildebrandt, F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J. Am. Soc. Nephrol.23, 1039–1047 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zeng, X. & Hou, S. X. Kidney stem cells found in adult zebrafish. Cell Stem Cell8, 247–249 (2011). ArticleCASPubMed Google Scholar
Singh, S. R., Liu, W. & Hou, S. X. The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell1, 191–203 (2007). ArticleCASPubMedPubMed Central Google Scholar
Singh, S. R. & Hou, S. X. Lessons learned about adult kidney stem cells from the malpighian tubules of Drosophila. J. Am. Soc. Nephrol.19, 660–666 (2008). ArticlePubMed Google Scholar
Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science294, 2546–2549 (2001). ArticleCASPubMed Google Scholar
Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science294, 2542–2545 (2001). ArticleCASPubMed Google Scholar
Gray, P. The development of the amphibian kidney. I. The development of the mesonephros of rana temporaria. Q. J. Micr. Sci.73, 507–545 (1930). Google Scholar
Fox, H. in Biology of the Reptilian (Gans, C. & Parsons, T. S.) 1–157 (Academic Press, London, 1977). Google Scholar
Beuchat, C. A. & Braun, E. J. Allometry of the kidney: implications for the ontogeny of osmoregulation. Am. J. Physiol.255, 760–767 (1988). Article Google Scholar
Wideman, R. F. Jr. Maturation of glomerular size distribution profiles in domestic fowl (Gallus gallus). J. Morphol.201, 205–213 (1989). ArticlePubMed Google Scholar
Nishimura, H. et al. Aquaporin-2 water channel in developing quail kidney: possible role in programming adult fluid homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol.293, 2147–2158 (2007). ArticleCAS Google Scholar
Bakir, L. & De Rouffignac, C. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol.249, 643–666 (1985). Google Scholar
Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell3, 169–181 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Reports2, 540–552 (2012). ArticleCASPubMed Google Scholar
Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest.114, 795–804 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin-multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol.17, 3300–3314 (2006). ArticlePubMed Google Scholar
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell2, 284–291 (2008). ArticleCASPubMed Google Scholar
Kitamura, S. et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J.19, 1789–1797 (2005). ArticleCASPubMed Google Scholar
Gupta, S. et al. Isolation and characterization of kidney-derived stem cells. J. Am. Soc. Nephrol.17, 3028–3040 (2006). ArticleCASPubMed Google Scholar
Maeshima, A., Sakurai, H. & Nigam, S. K. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J. Am. Soc. Nephrol.17, 188–198 (2006). ArticleCASPubMed Google Scholar
Challen, G. A., Bertoncello, I., Deane, J. A., Ricardo, S. D. & Little, M. H. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J. Am. Soc. Nephrol.17, 1896–1912 (2006). ArticleCASPubMed Google Scholar
Langworthy, M., Zhou, B., de Caestecker, M., Moeckel, G. & Baldwin, H. S. NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol.20, 311–321 (2009). ArticleCASPubMedPubMed Central Google Scholar
Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA108, 9226–9231 (2011). ArticlePubMedPubMed Central Google Scholar
Wen, X., Murugan, R., Peng, Z. & Kellum, J. A. Pathophysiology of acute kidney injury: a new perspective. Contrib. Nephrol.165, 39–45 (2010). ArticlePubMed Google Scholar
Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol.http://dx.doi.org/10.1002/path.4125.
Grouls, S. et al. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J. Am. Soc. Nephrol.23, 63–72 (2012). ArticleCASPubMed Google Scholar
Benigni, A. et al. Inhibiting ACE promotes renal repair by limiting progenitor cells proliferation and restoring the glomerular architecture. Am. J. Pathol.179, 628–638 (2011). ArticlePubMedPubMed Central Google Scholar
Peti-Peterdi, J. & Sipos, A. A high-powered view of the filtration barrier. J. Am. Soc. Nephrol.21, 1835–1841 (2010). ArticlePubMed Google Scholar
Coskun, V. et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc. Natl Acad. Sci. USA105, 1026–1031 (2008). ArticlePubMedPubMed Central Google Scholar
Ivanova, L., Hiatt, M. J., Yoder, M. C., Tarantal, A. F. & Matsell, D. G. Ontogeny of CD24 in human kidney. Kidney Int.77, 1123–1131 (2010). ArticleCASPubMed Google Scholar
Sagrinati, C. et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol.17, 2443–2456 (2006). ArticleCASPubMed Google Scholar
Mazzinghi, B. et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J. Exp. Med.205, 479–490 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol.18, 3128–3138 (2007). ArticleCASPubMed Google Scholar
Angelotti, M. L. et al. Characterization of renal progenitors committed toward the tubular lineage and their regenerative potential in renal tubular injury. Stem Cells30, 1714–1725 (2012). ArticleCASPubMed Google Scholar
Sallustio, F. et al. TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J.24, 514–525 (2010). ArticleCASPubMed Google Scholar
Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol.178, 828–837 (2011). ArticlePubMedPubMed Central Google Scholar
Ward, H. H. et al. Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules. Biochim. Biophys. Acta1812, 1344–1157 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bussolati, B. et al. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am. J. Physiol. Renal. Physiol.302, F116–F128 (2012). ArticleCASPubMed Google Scholar
Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation85, 1112–1119 (2008). ArticlePubMed Google Scholar
Ye, Y. et al. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis. Hum. Pathol.42, 1132–1141 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sallustio, F. et al. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. (in press).
Borg, B., Antonopoulou, E., Andersson, E., Carlberg, T. & Mayer, I. Effectiveness of several androgens in stimulating kidney hypertrophy, a secondary sexual character, in castrated male three-spined sticklebacks, Gasterosteus aculeatus. Can. J. Zool.71, 2327–2329 (1993). ArticleCAS Google Scholar
Rushbrook, B. J. & Barber, I. Nesting, courtship and kidney hypertrophy in _Schistocephalus_-infected male three-spined stickleback from an upland lake. J. Fish Biol.69, 870–882 (2006). Article Google Scholar
Bely, A. E. & Nyberg, K. J. Evolution of animal regeneration: re-emergence of a field. Trends Ecol. Evol.25, 161–170 (2010). ArticlePubMed Google Scholar
Shepherd, G. M. The human sense of smell: are we better than what we think? PLoS Biol.2, 572–575 (2004). ArticleCAS Google Scholar
Bely, A. E. Evolutionary loss of animal regeneration: pattern and process. Integr. Comp. Biol.50, 515–527 (2010). ArticlePubMed Google Scholar
Quigley, R. Developmental changes in renal function. Curr. Opin. Pediatr.24, 184–190 (2012). ArticlePubMed Google Scholar
Dantzler, W. H. & Braun, E. J. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol.239, R197–R213 (1980). ArticleCASPubMed Google Scholar
Goss, R. J. Principles of Regeneration. (Academic Press, New York, 1969). Google Scholar
Reichman, J. Evolution of regeneration capabilities. Am. Nat.123, 752–763 (1984). Article Google Scholar
Guffey, C. Costs associated with leg autotomy in the harvestmen Leiobunum nigripes and Leiobunum vittatum (Arachnida: Opiliones). Can. J. Zool.77, 824–830 (1999). Article Google Scholar
Brueseke, M. A. et al. Leg autotomy in the wolf spider Pardosa milvina: a common phenomenon with few apparent costs. Am. Midl. Nat.146, 153–160 (2001). Article Google Scholar
Brautigam, S. E. & Persons, M. H. The effect of limb loss on the courtship and mating behavior of the wolf spider Pardosa milvina (Araneae: Lycosidae). Insect Behav.16, 571–587 (2003). Article Google Scholar
Luyckx, V. A. & Brenner, B. M. The clinical importance of nephron mass. J. Am. Soc. Nephrol.21, 898–910 (2010). ArticlePubMed Google Scholar
Tan, J. C. et al. Glomerular function, structure, and number in renal allografts from older deceased donors. J. Am. Soc. Nephrol.20, 181–188 (2009). ArticlePubMedPubMed Central Google Scholar