Protein building blocks preserved by recombination (original) (raw)
References
Holland, J. Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor; 1975). Google Scholar
Stemmer, W.P.C. Rapid evolution of a protein in-vitro by DNA shuffling. Nature370, 389–391 (1994). ArticleCAS Google Scholar
Crameri, A., Raillard, S-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature391, 288–291 (1998). ArticleCAS Google Scholar
Ostermeier, M. & Benkovic, S.J. Evolution of protein function by domain swapping. Adv. Protein Chem.55, 29–77 (2000). ArticleCAS Google Scholar
Rossman, M.G. & Liljas, A. Recognition of structural domains in globular proteins. J. Mol. Biol.85, 177–181 (1974). ArticleCAS Google Scholar
Crippen, G.M. Tree structural organization of proteins. J. Mol. Biol.126, 315–332 (1978). ArticleCAS Google Scholar
Rose, G.D. Hierarchic organization of domains in globular-proteins J. Mol. Biol.134, 447–470 (1979). ArticleCAS Google Scholar
Go, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature291, 90–92 (1981). ArticleCAS Google Scholar
Zehfus, M.H. & Rose, G.D. Compact domains in proteins. Biochemistry25, 5759–5765 (1986). ArticleCAS Google Scholar
Holm, L. & Sander, C. Parser for protein folding units. Proteins19, 256–268 (1994). Article Google Scholar
Panchenko, A.R., Luthey-Schulten, Z. & Wolynes, P.G. Foldons, protein structural modules, and exons. Proc. Natl. Acad. Sci. USA93, 2008–2013 (1996). ArticleCAS Google Scholar
Tsai, C.-J., Maizel, J.V. & Nussinov, R. Anatomy of protein structures: visualizing how a one-dimensional protein chain folds into a three-dimensional shape. Proc. Natl. Acad. Sci. USA97, 12038–12043 (2000). ArticleCAS Google Scholar
Go, M. Modular structural units, exons, and function in chicken lysozyme. Proc. Natl. Acad. Sci. USA80, 1964–1968 (1983). ArticleCAS Google Scholar
de Souza, S.J., Long, M., Schoenbach, L., Roy, S.W. & Gilbert, W. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA93, 14632–14636 (1996). ArticleCAS Google Scholar
Gilbert, W., de Souza, S.J. & Long, M.Y. Origin of genes. Proc. Natl. Acad. Sci. USA94, 7698–7703 (1997). ArticleCAS Google Scholar
Ranganathan, A. et al. Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem. Biol.6, 731–741 (1999). ArticleCAS Google Scholar
Bogarad, L.D. & Deem, M.W. A hierarchal approach to protein molecular evolution. Proc. Natl. Acad. Sci. USA96, 2591–2595 (1999). ArticleCAS Google Scholar
Riechmann, L. & Winter, G. Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc. Natl. Acad. Sci. USA97, 10068–10073 (2000). ArticleCAS Google Scholar
Forrest, S. & Mitchell, M. Foundations of Genetic Algorithms 2 (ed. Whitley, L.D.) 109 (Morgan Kaufmann, San Mateo; 1993). Google Scholar
Mitchell, M. An Introduction to Genetic Algorithms (The MIT Press, Cambridge, Massachusetts; 1996). Google Scholar
Sanschagrin, F., Theriault, E., Sabbagh, Y., Voyer, N. & Levesque, R.C. Combinatorial biochemistry and shuffling TEM, SHV and Streptomyces albus omega loops in PSE-4 class A β-lactamase. J. Antimicrob. Chemo.45, 517–519 (2000). ArticleCAS Google Scholar
Ness, J.E. et al. DNA shuffling of subgenomic sequences of subtilisin. Nature Biotech.17, 893–896 (1999). ArticleCAS Google Scholar
Brock, B.J. & Waterman, M.R. The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys.373, 401–408 (2000). ArticleCAS Google Scholar
Ostermeier, M., Shim, J.H. & Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nature Biotech.17, 1205–1209 (1999). ArticleCAS Google Scholar
Lutz, S., Ostermeier, M. & Benkovic, S.J. Rapid generation of incremental truncation libraries for protein engineering using α-phosphothioate nucleotides. Nucleic Acids Res.29, e16 (2001). ArticleCAS Google Scholar
Jelsch, C., Mourey, L., Masson, J.M. & Samama, J.P. Crystal-structure of Escherichia coli TEM-1 β-lactamase at 1.8-Å resolution. Proteins16, 364–383 (1993). ArticleCAS Google Scholar
Lim, D. et al. Insights into the molecular basis for carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry40, 395–402 (2001). ArticleCAS Google Scholar
Horton, R.M. PCR-mediated recombination and mutagenesis. Mol. Biotech.3, 93–99 (1995). ArticleCAS Google Scholar
Palzkill, T. & Botstein, D. Probing β-lactamase structure and function using random replacement mutagenesis. Proteins14, 19–44 (1992). Article Google Scholar
Huang, W.Z., Petrosino, J., Hirsch, M., Shenkin, P.S. & Palzkill, T. Amino acid sequence determinants of β-lactamase structure and activity. J. Mol. Biol.258, 688–703 (1996). ArticleCAS Google Scholar
Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.-G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA98, 3778–3783 (2001). ArticleCAS Google Scholar
Voigt, C.A., Kauffman, S. & Wang, Z.-G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem.55, 79–160 (2000). ArticleCAS Google Scholar
Voigt, C.A., Mayo, S.L., Arnold, F.H., & Wang, Z.-G., Computationally focusing the directed evolution of proteins. J. Cell. Biochem. Suppl. 37, 58–63 (2001).
Bolon, D.N., Voigt, C.A. & Mayo, S.L. De novo design of biocatalysts. Curr. Opin. Chem. Biol.6, 125–129 (2002). ArticleCAS Google Scholar
Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA89, 10915–10919 (1992). ArticleCAS Google Scholar
Lobkovsky, E. et al. Evolution of an enzyme-activity — crystallographic structure at 2-Å resolution of cephalosporinase from the AmpC gene of _Enterobacter cloacae_-P99 and comparison with a class-A penicillinase. Proc. Natl. Acad. USA90, 11257–11261 (1993). ArticleCAS Google Scholar
Betzel, C. et al. Crystal-structure of the alkaline proteinase savinase from Bacillus lentus at 1.4-Å resolution. J. Mol. Biol.223, 427–445 (1992). ArticleCAS Google Scholar
Almassy, R.J., Janson, C.A., Kan, C.C. & Hostomska, Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc. Natl. Acad. Sci. USA89, 6114–6118 (1992). ArticleCAS Google Scholar
Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics14, 51–55 (1996). ArticleCAS Google Scholar