Protein building blocks preserved by recombination (original) (raw)

References

  1. Holland, J. Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor; 1975).
    Google Scholar
  2. Stemmer, W.P.C. Rapid evolution of a protein in-vitro by DNA shuffling. Nature 370, 389–391 (1994).
    Article CAS Google Scholar
  3. Crameri, A., Raillard, S-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).
    Article CAS Google Scholar
  4. Ostermeier, M. & Benkovic, S.J. Evolution of protein function by domain swapping. Adv. Protein Chem. 55, 29–77 (2000).
    Article CAS Google Scholar
  5. Rossman, M.G. & Liljas, A. Recognition of structural domains in globular proteins. J. Mol. Biol. 85, 177–181 (1974).
    Article CAS Google Scholar
  6. Crippen, G.M. Tree structural organization of proteins. J. Mol. Biol. 126, 315–332 (1978).
    Article CAS Google Scholar
  7. Rose, G.D. Hierarchic organization of domains in globular-proteins J. Mol. Biol. 134, 447–470 (1979).
    Article CAS Google Scholar
  8. Go, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 (1981).
    Article CAS Google Scholar
  9. Zehfus, M.H. & Rose, G.D. Compact domains in proteins. Biochemistry 25, 5759–5765 (1986).
    Article CAS Google Scholar
  10. Holm, L. & Sander, C. Parser for protein folding units. Proteins 19, 256–268 (1994).
    Article Google Scholar
  11. Panchenko, A.R., Luthey-Schulten, Z. & Wolynes, P.G. Foldons, protein structural modules, and exons. Proc. Natl. Acad. Sci. USA 93, 2008–2013 (1996).
    Article CAS Google Scholar
  12. Tsai, C.-J., Maizel, J.V. & Nussinov, R. Anatomy of protein structures: visualizing how a one-dimensional protein chain folds into a three-dimensional shape. Proc. Natl. Acad. Sci. USA 97, 12038–12043 (2000).
    Article CAS Google Scholar
  13. Go, M. Modular structural units, exons, and function in chicken lysozyme. Proc. Natl. Acad. Sci. USA 80, 1964–1968 (1983).
    Article CAS Google Scholar
  14. de Souza, S.J., Long, M., Schoenbach, L., Roy, S.W. & Gilbert, W. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93, 14632–14636 (1996).
    Article CAS Google Scholar
  15. Gilbert, W., de Souza, S.J. & Long, M.Y. Origin of genes. Proc. Natl. Acad. Sci. USA 94, 7698–7703 (1997).
    Article CAS Google Scholar
  16. Ranganathan, A. et al. Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem. Biol. 6, 731–741 (1999).
    Article CAS Google Scholar
  17. Bogarad, L.D. & Deem, M.W. A hierarchal approach to protein molecular evolution. Proc. Natl. Acad. Sci. USA 96, 2591–2595 (1999).
    Article CAS Google Scholar
  18. Riechmann, L. & Winter, G. Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc. Natl. Acad. Sci. USA 97, 10068–10073 (2000).
    Article CAS Google Scholar
  19. Forrest, S. & Mitchell, M. Foundations of Genetic Algorithms 2 (ed. Whitley, L.D.) 109 (Morgan Kaufmann, San Mateo; 1993).
    Google Scholar
  20. Mitchell, M. An Introduction to Genetic Algorithms (The MIT Press, Cambridge, Massachusetts; 1996).
    Google Scholar
  21. Sanschagrin, F., Theriault, E., Sabbagh, Y., Voyer, N. & Levesque, R.C. Combinatorial biochemistry and shuffling TEM, SHV and Streptomyces albus omega loops in PSE-4 class A β-lactamase. J. Antimicrob. Chemo. 45, 517–519 (2000).
    Article CAS Google Scholar
  22. Ness, J.E. et al. DNA shuffling of subgenomic sequences of subtilisin. Nature Biotech. 17, 893–896 (1999).
    Article CAS Google Scholar
  23. Brock, B.J. & Waterman, M.R. The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys. 373, 401–408 (2000).
    Article CAS Google Scholar
  24. Ostermeier, M., Shim, J.H. & Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nature Biotech. 17, 1205–1209 (1999).
    Article CAS Google Scholar
  25. Lutz, S., Ostermeier, M. & Benkovic, S.J. Rapid generation of incremental truncation libraries for protein engineering using α-phosphothioate nucleotides. Nucleic Acids Res. 29, e16 (2001).
    Article CAS Google Scholar
  26. Jelsch, C., Mourey, L., Masson, J.M. & Samama, J.P. Crystal-structure of Escherichia coli TEM-1 β-lactamase at 1.8-Å resolution. Proteins 16, 364–383 (1993).
    Article CAS Google Scholar
  27. Lim, D. et al. Insights into the molecular basis for carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry 40, 395–402 (2001).
    Article CAS Google Scholar
  28. Horton, R.M. PCR-mediated recombination and mutagenesis. Mol. Biotech. 3, 93–99 (1995).
    Article CAS Google Scholar
  29. Palzkill, T. & Botstein, D. Probing β-lactamase structure and function using random replacement mutagenesis. Proteins 14, 19–44 (1992).
    Article Google Scholar
  30. Huang, W.Z., Petrosino, J., Hirsch, M., Shenkin, P.S. & Palzkill, T. Amino acid sequence determinants of β-lactamase structure and activity. J. Mol. Biol. 258, 688–703 (1996).
    Article CAS Google Scholar
  31. Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.-G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98, 3778–3783 (2001).
    Article CAS Google Scholar
  32. Voigt, C.A., Kauffman, S. & Wang, Z.-G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem. 55, 79–160 (2000).
    Article CAS Google Scholar
  33. Voigt, C.A., Mayo, S.L., Arnold, F.H., & Wang, Z.-G., Computationally focusing the directed evolution of proteins. J. Cell. Biochem. Suppl. 37, 58–63 (2001).
  34. Bolon, D.N., Voigt, C.A. & Mayo, S.L. De novo design of biocatalysts. Curr. Opin. Chem. Biol. 6, 125–129 (2002).
    Article CAS Google Scholar
  35. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992).
    Article CAS Google Scholar
  36. Lobkovsky, E. et al. Evolution of an enzyme-activity — crystallographic structure at 2-Å resolution of cephalosporinase from the AmpC gene of _Enterobacter cloacae_-P99 and comparison with a class-A penicillinase. Proc. Natl. Acad. USA 90, 11257–11261 (1993).
    Article CAS Google Scholar
  37. Betzel, C. et al. Crystal-structure of the alkaline proteinase savinase from Bacillus lentus at 1.4-Å resolution. J. Mol. Biol. 223, 427–445 (1992).
    Article CAS Google Scholar
  38. Williams, P.A., Cosme, J., Sridhar, V., Johnson, E.F. & Mcree, D.E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell. 93, 121–131 (2000).
    Article Google Scholar
  39. Almassy, R.J., Janson, C.A., Kan, C.C. & Hostomska, Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc. Natl. Acad. Sci. USA 89, 6114–6118 (1992).
    Article CAS Google Scholar
  40. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).
    Article CAS Google Scholar

Download references