- Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).
Article CAS Google Scholar
- Bushati, N. & Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).
Article CAS Google Scholar
- Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).
Article CAS Google Scholar
- Jackson, R.J. & Standart, N. How do microRNAs regulate gene expression? Sci. STKE 2007, re1 (2007).
Article Google Scholar
- Nissan, T. & Parker, R. Computational analysis of miRNA-mediated repression of translation: Implications for models of translation initiation inhibition. RNA 14, 1480–1491 (2008).
Article CAS Google Scholar
- Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).
Article CAS Google Scholar
- Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).
Article CAS Google Scholar
- Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).
Article CAS Google Scholar
- Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).
Article CAS Google Scholar
- Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).
Article CAS Google Scholar
- Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).
Article CAS Google Scholar
- Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).
Article CAS Google Scholar
- Shyu, A.B. & Chen, A.C.-Y. Regulation of mRNA turnover. in Handbook of Cell Signaling 2nd edn. (eds. Bradshaw, R.A. & Dennis, E.A.) Ch. 277, 2311–2315 (Elsevier, San Diego, 2009).
- Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
Article Google Scholar
- Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).
Article CAS Google Scholar
- Barth, S. et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).
Article CAS Google Scholar
- Behm-Ansmant, I., Rehwinkel, J. & Izaurralde, E. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb. Symp. Quant. Biol. 71, 523–530 (2006).
Article CAS Google Scholar
- Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).
Article CAS Google Scholar
- Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).
Article CAS Google Scholar
- Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007).
Article CAS Google Scholar
- Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 17, 411–416 (2007).
Article CAS Google Scholar
- Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol. 8, 1267–1274 (2005).
Article Google Scholar
- Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).
Article Google Scholar
- Meister, G. et al. Identificiation of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).
Article CAS Google Scholar
- Chu, C.-Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).
Article Google Scholar
- Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).
Article CAS Google Scholar
- Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15, 1059–1066 (2009).
Article CAS Google Scholar
- Lian, S.L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15, 804–813 (2009).
Article CAS Google Scholar
- Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089 (2009).
Article CAS Google Scholar
- Zipprich, J.T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).
Article CAS Google Scholar
- Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).
Article CAS Google Scholar
- Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151 (2007).
Article CAS Google Scholar
- Chen, A.C.-Y., Ezzeddine, N. & Shyu, A.B. Messenger RNA half-life measuremments in mammalian cells. Methods Enzymol. 448, 335–357 (2008).
Article CAS Google Scholar
- Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).
Article CAS Google Scholar
- Zheng, D. et al. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol. 182, 89–101 (2008).
Article CAS Google Scholar
- Pillai, R.S. et al. Inhibition of translational initiation by let-7 micro-RNA in human cells. Science 309, 1573–1576 (2005).
Article CAS Google Scholar
- Baron-Benhamou, J., Gehring, N.H., Kulozik, A.E. & Hentze, M.W. Using the lambda N peptide to tether proteins to RNAs. Methods Mol. Biol. 257, 135–154 (2004).
CAS PubMed Google Scholar
- Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).
Article CAS Google Scholar
- Liu, J. et al. Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science 305, 1437–1441 (2004).
Article CAS Google Scholar
- Xu, N., Loflin, P., Chen, C.-Y.A. & Shyu, A.-B. A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res. 26, 558–565 (1998).
Article CAS Google Scholar
- Chen, C.-Y.A. & Shyu, A.-B. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cell. Biol. 23, 4805–4813 (2003).
Article CAS Google Scholar
- Chen, C.-Y.A. & Shyu, A.-B. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482 (1994).
Article CAS Google Scholar
- Chen, C.-Y.A. & Shyu, A.-B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).
Article CAS Google Scholar
- Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450 (1995).
CAS PubMed PubMed Central Google Scholar
- Grosset, C. et al. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103, 29–40 (2000).
Article CAS Google Scholar
- Ponting, C.P., Oliver, P.L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).
Article CAS Google Scholar
- Shyu, A.B., Wilkinson, M.F. & van Hoof, A. Messenger RNA regulation: to translate or to degrad. EMBO J. 27, 471–481 (2008).
Article CAS Google Scholar
- Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).
Article CAS Google Scholar
- Baillat, D. & Shiekhattar, R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell. Biol. 29, 4144–4155 (2009).
Article CAS Google Scholar
- Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).
Article CAS Google Scholar
- Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).
Article CAS Google Scholar
- von Roretz, C. & Gallouzi, I.-E. Decoding ARE-mediated decay: is microRNA part of the equation? J. Cell Biol. 181, 189–194 (2008).
Article CAS Google Scholar
- Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA 99, 12663–12668 (2002).
Article CAS Google Scholar
- Shyu, A.-B., Belasco, J.G. & Greenberg, M.G. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221–231 (1991).
Article CAS Google Scholar
- Peng, S.-S., Chen, C.-Y.A., Xu, N. & Shyu, A.-B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).
Article CAS Google Scholar